基于rem的下一代多层蜂窝网络切换算法

C. Suarez-Rodriguez, B. Jayawickrama, F. Bader, E. Dutkiewicz, M. Heimlich
{"title":"基于rem的下一代多层蜂窝网络切换算法","authors":"C. Suarez-Rodriguez, B. Jayawickrama, F. Bader, E. Dutkiewicz, M. Heimlich","doi":"10.1109/WCNC.2018.8377242","DOIUrl":null,"url":null,"abstract":"The strongest-cell criterion has been extensively used for handover algorithms during the last cellular-network generations. When network topologies become multi-layered, it results in abrupt behaviors such as the ping-pong effect as a consequence of the power gap between tiers and their irregular deployment. This effect not only affects users' quality of experience but also introduces a significant network overhead. Therefore, we propose an original handover algorithm based on predicted incomplete channel states from a Radio Environment Map to reduce this effect. The proposed algorithm is user triggered, network assisted, and fully backward compatible with LTE-A. Moreover, we evaluate the performance of our proposed algorithm against LTE-A in a two-tier cellular network for different user speeds following the guidelines outlined by the 3GPP on diverse matters (channel, mobility, wrapping, etc.). When applying realistic timing, our results reveal a highly substantial improvement in the number of ping-pong handovers regardless of the handover policy adopted in comparison to LTE-A without sacrificing users' experience; for instance, we obtain at least an order of magnitude decrease in the ping-pong rate at the expense of losing less than 9 percent in spectral efficiency.","PeriodicalId":360054,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"REM-based handover algorithm for next-generation multi-tier cellular networks\",\"authors\":\"C. Suarez-Rodriguez, B. Jayawickrama, F. Bader, E. Dutkiewicz, M. Heimlich\",\"doi\":\"10.1109/WCNC.2018.8377242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strongest-cell criterion has been extensively used for handover algorithms during the last cellular-network generations. When network topologies become multi-layered, it results in abrupt behaviors such as the ping-pong effect as a consequence of the power gap between tiers and their irregular deployment. This effect not only affects users' quality of experience but also introduces a significant network overhead. Therefore, we propose an original handover algorithm based on predicted incomplete channel states from a Radio Environment Map to reduce this effect. The proposed algorithm is user triggered, network assisted, and fully backward compatible with LTE-A. Moreover, we evaluate the performance of our proposed algorithm against LTE-A in a two-tier cellular network for different user speeds following the guidelines outlined by the 3GPP on diverse matters (channel, mobility, wrapping, etc.). When applying realistic timing, our results reveal a highly substantial improvement in the number of ping-pong handovers regardless of the handover policy adopted in comparison to LTE-A without sacrificing users' experience; for instance, we obtain at least an order of magnitude decrease in the ping-pong rate at the expense of losing less than 9 percent in spectral efficiency.\",\"PeriodicalId\":360054,\"journal\":{\"name\":\"2018 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2018.8377242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2018.8377242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在上一代蜂窝网络中,最强蜂窝准则被广泛用于切换算法。当网络拓扑结构变得多层时,由于层间的功率差距和层间的不规则部署,会导致乒乓效应等突发行为。这种影响不仅会影响用户的体验质量,还会带来巨大的网络开销。因此,我们提出了一种基于无线电环境映射预测的不完整信道状态的原始切换算法来减少这种影响。该算法由用户触发,网络辅助,并完全向后兼容LTE-A。此外,我们根据3GPP在不同问题(信道、移动性、包装等)上概述的指导方针,评估了我们提出的算法在两层蜂窝网络中针对不同用户速度的LTE-A的性能。当应用现实时间时,我们的结果显示,与LTE-A相比,无论采用何种切换策略,在不牺牲用户体验的情况下,乒乓切换的数量都有很大的改善;例如,我们以频谱效率损失不到9%为代价,获得了乒乓速率至少一个数量级的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REM-based handover algorithm for next-generation multi-tier cellular networks
The strongest-cell criterion has been extensively used for handover algorithms during the last cellular-network generations. When network topologies become multi-layered, it results in abrupt behaviors such as the ping-pong effect as a consequence of the power gap between tiers and their irregular deployment. This effect not only affects users' quality of experience but also introduces a significant network overhead. Therefore, we propose an original handover algorithm based on predicted incomplete channel states from a Radio Environment Map to reduce this effect. The proposed algorithm is user triggered, network assisted, and fully backward compatible with LTE-A. Moreover, we evaluate the performance of our proposed algorithm against LTE-A in a two-tier cellular network for different user speeds following the guidelines outlined by the 3GPP on diverse matters (channel, mobility, wrapping, etc.). When applying realistic timing, our results reveal a highly substantial improvement in the number of ping-pong handovers regardless of the handover policy adopted in comparison to LTE-A without sacrificing users' experience; for instance, we obtain at least an order of magnitude decrease in the ping-pong rate at the expense of losing less than 9 percent in spectral efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信