基于局部均值的k-最近邻(LMKNCN)分类器的核熵分量分析用于视频监控摄像机系统中的人脸识别

S. Damavandinejadmonfared
{"title":"基于局部均值的k-最近邻(LMKNCN)分类器的核熵分量分析用于视频监控摄像机系统中的人脸识别","authors":"S. Damavandinejadmonfared","doi":"10.1109/ICCP.2012.6356195","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for face recognition in video surveillance is proposed. Local mean-based k-nearest centroid neighbour (LMKNCN) is a recently proposed method for classifying data which has been proven to be more appropriate than other classifiers such as k-nearest neighbour (KNN), K-Nearest Centroid Neighbour (KNCN), and local mean-based k-nearest neighbour (LMKNN). Kernel Entropy Component Analysis is a new extension of 1-D PCA-based feature extractions methods enhancing the performance of PCA-based methods. In the proposed method in this paper, LMKNCN is used as a classifier in KPCA method. Moreover, the Extensive experiments on surveillance camera faces database (SCfaces) and Head Pose Image database reveal the significance of the proposed method.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Kernel Entropy Component Analysis using local mean-based k-nearest centroid neighbour (LMKNCN) as a classifier for face recognition in video surveillance camera systems\",\"authors\":\"S. Damavandinejadmonfared\",\"doi\":\"10.1109/ICCP.2012.6356195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method for face recognition in video surveillance is proposed. Local mean-based k-nearest centroid neighbour (LMKNCN) is a recently proposed method for classifying data which has been proven to be more appropriate than other classifiers such as k-nearest neighbour (KNN), K-Nearest Centroid Neighbour (KNCN), and local mean-based k-nearest neighbour (LMKNN). Kernel Entropy Component Analysis is a new extension of 1-D PCA-based feature extractions methods enhancing the performance of PCA-based methods. In the proposed method in this paper, LMKNCN is used as a classifier in KPCA method. Moreover, the Extensive experiments on surveillance camera faces database (SCfaces) and Head Pose Image database reveal the significance of the proposed method.\",\"PeriodicalId\":406461,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2012.6356195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种视频监控中人脸识别的新方法。基于局部均值的k-近邻(LMKNCN)是最近提出的一种数据分类方法,已被证明比其他分类器如k-近邻(KNN)、k-近邻(KNCN)和基于局部均值的k-近邻(LMKNN)更合适。核熵成分分析是基于一维pca的特征提取方法的新扩展,提高了基于pca的特征提取方法的性能。在本文提出的方法中,使用LMKNCN作为KPCA方法中的分类器。通过对监控摄像机人脸数据库和头部姿态图像数据库的大量实验,揭示了该方法的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel Entropy Component Analysis using local mean-based k-nearest centroid neighbour (LMKNCN) as a classifier for face recognition in video surveillance camera systems
In this paper, a new method for face recognition in video surveillance is proposed. Local mean-based k-nearest centroid neighbour (LMKNCN) is a recently proposed method for classifying data which has been proven to be more appropriate than other classifiers such as k-nearest neighbour (KNN), K-Nearest Centroid Neighbour (KNCN), and local mean-based k-nearest neighbour (LMKNN). Kernel Entropy Component Analysis is a new extension of 1-D PCA-based feature extractions methods enhancing the performance of PCA-based methods. In the proposed method in this paper, LMKNCN is used as a classifier in KPCA method. Moreover, the Extensive experiments on surveillance camera faces database (SCfaces) and Head Pose Image database reveal the significance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信