{"title":"基于雅各布的串行机器人机械手逆运动学方法比较","authors":"I. Dulęba, Michal Opalka","doi":"10.2478/amcs-2013-0028","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison is based on the evaluation of a short distance approaching the goal point and on their computational complexity. As the reference method, the Jacobian pseudo-inverse is utilized. Simulation results reveal that the modified Levenberg-Marquardt method is promising, while the first order approximation method is reliable and requires mild computational costs. Some hints are formulated concerning the application of Jacobian-based methods in practice.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators\",\"authors\":\"I. Dulęba, Michal Opalka\",\"doi\":\"10.2478/amcs-2013-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison is based on the evaluation of a short distance approaching the goal point and on their computational complexity. As the reference method, the Jacobian pseudo-inverse is utilized. Simulation results reveal that the modified Levenberg-Marquardt method is promising, while the first order approximation method is reliable and requires mild computational costs. Some hints are formulated concerning the application of Jacobian-based methods in practice.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators
The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison is based on the evaluation of a short distance approaching the goal point and on their computational complexity. As the reference method, the Jacobian pseudo-inverse is utilized. Simulation results reveal that the modified Levenberg-Marquardt method is promising, while the first order approximation method is reliable and requires mild computational costs. Some hints are formulated concerning the application of Jacobian-based methods in practice.