低GPU内存占用的两阶段多器官自动分割

Yi Lv, Junchen Wang
{"title":"低GPU内存占用的两阶段多器官自动分割","authors":"Yi Lv, Junchen Wang","doi":"10.1109/WRCSARA57040.2022.9903976","DOIUrl":null,"url":null,"abstract":"Abdominal multi organ segmentation is of great significance in medical diagnosis and research. As the abdominal CT usually has a high resolution and a high image size, automatic segmentation of the abdominal organs demands a high configuration of hardware. In this paper, we proposed a low GPU memory occupied two stage fully supervised automatic segmentation framework for abdomina113 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum, and designed a lightweight 3D CNN refer to as Tiny-CED Net. The proposed Tiny-CED Net can accurately complete the automatic segmentation of the whole abdominal CT with the GPU memory occupation <2GB. The results show that the average DSC of our method reached 0.83. The average time consumption and max GPU memory occupied are less than 25s and 2GB.","PeriodicalId":106730,"journal":{"name":"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Stage Multi-Organ Automatic Segmentation with Low GPU Memory Occupancy\",\"authors\":\"Yi Lv, Junchen Wang\",\"doi\":\"10.1109/WRCSARA57040.2022.9903976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abdominal multi organ segmentation is of great significance in medical diagnosis and research. As the abdominal CT usually has a high resolution and a high image size, automatic segmentation of the abdominal organs demands a high configuration of hardware. In this paper, we proposed a low GPU memory occupied two stage fully supervised automatic segmentation framework for abdomina113 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum, and designed a lightweight 3D CNN refer to as Tiny-CED Net. The proposed Tiny-CED Net can accurately complete the automatic segmentation of the whole abdominal CT with the GPU memory occupation <2GB. The results show that the average DSC of our method reached 0.83. The average time consumption and max GPU memory occupied are less than 25s and 2GB.\",\"PeriodicalId\":106730,\"journal\":{\"name\":\"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WRCSARA57040.2022.9903976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRCSARA57040.2022.9903976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

腹部多器官分割在医学诊断和研究中具有重要意义。由于腹部CT通常具有高分辨率和高图像尺寸,因此腹部器官的自动分割对硬件配置要求很高。本文提出了一种低GPU内存占用的腹部器官肝、脾、胰、右肾、左肾、胃、胆囊、食道、主动脉、下腔静脉、右肾上腺、左肾上腺、十二指肠两阶段全监督自动分割框架,并设计了一个轻量级的3D CNN,称为Tiny-CED Net。所提出的Tiny-CED Net能够在GPU内存占用<2GB的情况下,准确完成腹部CT整幅图像的自动分割。结果表明,该方法的平均DSC可达0.83。平均耗时小于25s,最大GPU内存占用小于2GB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stage Multi-Organ Automatic Segmentation with Low GPU Memory Occupancy
Abdominal multi organ segmentation is of great significance in medical diagnosis and research. As the abdominal CT usually has a high resolution and a high image size, automatic segmentation of the abdominal organs demands a high configuration of hardware. In this paper, we proposed a low GPU memory occupied two stage fully supervised automatic segmentation framework for abdomina113 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum, and designed a lightweight 3D CNN refer to as Tiny-CED Net. The proposed Tiny-CED Net can accurately complete the automatic segmentation of the whole abdominal CT with the GPU memory occupation <2GB. The results show that the average DSC of our method reached 0.83. The average time consumption and max GPU memory occupied are less than 25s and 2GB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信