{"title":"基于深度卷积神经网络的高分辨率指纹点和初纹检测","authors":"V. Anand, Vivek Kanhangad","doi":"10.1109/ISBA.2019.8778527","DOIUrl":null,"url":null,"abstract":"Automated fingerprint recognition using partial and latent fingerprints employs level 3 features which provide additional information in the absence of sufficient number of level 1 and level 2 features. In this paper, we present a methodology for detecting two level 3 features namely, dots and incipient ridges. Specifically, we have designed a deep convolutional neural network which generates a dot map from the input fingerprint image. Subsequently, post-processing operations are performed on the obtained dot map to identify the coordinates of dots and incipient ridges. The results of our experiments on the publicly available PolyU HRF database demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Convolutional Neural Network for Dot and Incipient Ridge Detection in High-resolution Fingerprints\",\"authors\":\"V. Anand, Vivek Kanhangad\",\"doi\":\"10.1109/ISBA.2019.8778527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated fingerprint recognition using partial and latent fingerprints employs level 3 features which provide additional information in the absence of sufficient number of level 1 and level 2 features. In this paper, we present a methodology for detecting two level 3 features namely, dots and incipient ridges. Specifically, we have designed a deep convolutional neural network which generates a dot map from the input fingerprint image. Subsequently, post-processing operations are performed on the obtained dot map to identify the coordinates of dots and incipient ridges. The results of our experiments on the publicly available PolyU HRF database demonstrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Convolutional Neural Network for Dot and Incipient Ridge Detection in High-resolution Fingerprints
Automated fingerprint recognition using partial and latent fingerprints employs level 3 features which provide additional information in the absence of sufficient number of level 1 and level 2 features. In this paper, we present a methodology for detecting two level 3 features namely, dots and incipient ridges. Specifically, we have designed a deep convolutional neural network which generates a dot map from the input fingerprint image. Subsequently, post-processing operations are performed on the obtained dot map to identify the coordinates of dots and incipient ridges. The results of our experiments on the publicly available PolyU HRF database demonstrate the effectiveness of the proposed algorithm.