基于多滞后和平稳时间序列的人工神经网络短期负荷预测

M. H. Harun, Muhammad Murtadha Othman, I. Musirin
{"title":"基于多滞后和平稳时间序列的人工神经网络短期负荷预测","authors":"M. H. Harun, Muhammad Murtadha Othman, I. Musirin","doi":"10.1109/PEOCO.2010.5559238","DOIUrl":null,"url":null,"abstract":"This paper presents the artificial neural network (ANN) that used to perform the short-term load forecasting (STLF). The input data of ANN is comprises of multiple lags of hourly peak load. Hence, imperative information regarding to the movement patterns of a time series can be obtained based on the multiple time lags of chronological hourly peak load. This may assist towards the improvement of ANN in forecasting the hourly peak loads. The Levenberg-Marquardt optimization technique is used as a back propagation algorithm for the ANN. The forecasted hourly peak loads are obtained based on the stationary output of ANN. The Malaysian hourly peak loads are used as a case study in the estimation of STLF using ANN. The results have shown that the proposed technique is robust in forecasting the future hourly peak loads with less error.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short term load forecasting (STLF) using artificial neural network based multiple lags and stationary time series\",\"authors\":\"M. H. Harun, Muhammad Murtadha Othman, I. Musirin\",\"doi\":\"10.1109/PEOCO.2010.5559238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the artificial neural network (ANN) that used to perform the short-term load forecasting (STLF). The input data of ANN is comprises of multiple lags of hourly peak load. Hence, imperative information regarding to the movement patterns of a time series can be obtained based on the multiple time lags of chronological hourly peak load. This may assist towards the improvement of ANN in forecasting the hourly peak loads. The Levenberg-Marquardt optimization technique is used as a back propagation algorithm for the ANN. The forecasted hourly peak loads are obtained based on the stationary output of ANN. The Malaysian hourly peak loads are used as a case study in the estimation of STLF using ANN. The results have shown that the proposed technique is robust in forecasting the future hourly peak loads with less error.\",\"PeriodicalId\":379868,\"journal\":{\"name\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"volume\":\"16 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Power Engineering and Optimization Conference (PEOCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEOCO.2010.5559238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于短期负荷预测的人工神经网络(ANN)。人工神经网络的输入数据由小时峰值负荷的多个滞后组成。因此,基于按时间顺序的小时峰值负荷的多个时间滞后,可以获得关于时间序列的运动模式的必要信息。这有助于改进人工神经网络对小时高峰负荷的预测。采用Levenberg-Marquardt优化技术作为人工神经网络的反向传播算法。基于人工神经网络的平稳输出,得到了预测的小时峰值负荷。本文以马来西亚的小时高峰负荷为例,利用人工神经网络进行STLF估计。结果表明,该方法在预测未来小时峰值负荷方面具有较好的鲁棒性,误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short term load forecasting (STLF) using artificial neural network based multiple lags and stationary time series
This paper presents the artificial neural network (ANN) that used to perform the short-term load forecasting (STLF). The input data of ANN is comprises of multiple lags of hourly peak load. Hence, imperative information regarding to the movement patterns of a time series can be obtained based on the multiple time lags of chronological hourly peak load. This may assist towards the improvement of ANN in forecasting the hourly peak loads. The Levenberg-Marquardt optimization technique is used as a back propagation algorithm for the ANN. The forecasted hourly peak loads are obtained based on the stationary output of ANN. The Malaysian hourly peak loads are used as a case study in the estimation of STLF using ANN. The results have shown that the proposed technique is robust in forecasting the future hourly peak loads with less error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信