基于神经网络集成的多光谱图像分类

Xiaoyang Fu
{"title":"基于神经网络集成的多光谱图像分类","authors":"Xiaoyang Fu","doi":"10.1109/ICACI.2016.7449838","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate neural network ensemble (NNE) classifier and its application to multi-spectral image classification. The effectiveness of the NNE classifier is demonstrated on SPOT multi-spectral image data. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, k-NN classifier, it has shown that the NNE classifier can have better performance on multi-spectral image classification.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"92 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multispectral image classification based on neural network ensembles\",\"authors\":\"Xiaoyang Fu\",\"doi\":\"10.1109/ICACI.2016.7449838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate neural network ensemble (NNE) classifier and its application to multi-spectral image classification. The effectiveness of the NNE classifier is demonstrated on SPOT multi-spectral image data. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, k-NN classifier, it has shown that the NNE classifier can have better performance on multi-spectral image classification.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"92 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了神经网络集成分类器及其在多光谱图像分类中的应用。在SPOT多光谱图像数据上验证了NNE分类器的有效性。通过与贝叶斯最大似然分类器、k-NN分类器等标准分类器的比较,表明NNE分类器在多光谱图像分类上具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral image classification based on neural network ensembles
In this paper, we investigate neural network ensemble (NNE) classifier and its application to multi-spectral image classification. The effectiveness of the NNE classifier is demonstrated on SPOT multi-spectral image data. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, k-NN classifier, it has shown that the NNE classifier can have better performance on multi-spectral image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信