{"title":"斜对称矩阵的结构化移位","authors":"C. Greif","doi":"10.1553/etna_vol55s455","DOIUrl":null,"url":null,"abstract":". We consider the use of a skew-symmetric block-diagonal matrix as a structured shift. Properties of Hamiltonian and skew-Hamiltonian matrices are used to show that the shift can be effectively used in the iterative solution of skew-symmetric linear systems or nonsymmetric linear systems with a dominant skew-symmetric part. Eigenvalue analysis and some numerical experiments confirm our observations.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structured shifts for skew-symmetric matrices\",\"authors\":\"C. Greif\",\"doi\":\"10.1553/etna_vol55s455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider the use of a skew-symmetric block-diagonal matrix as a structured shift. Properties of Hamiltonian and skew-Hamiltonian matrices are used to show that the shift can be effectively used in the iterative solution of skew-symmetric linear systems or nonsymmetric linear systems with a dominant skew-symmetric part. Eigenvalue analysis and some numerical experiments confirm our observations.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. We consider the use of a skew-symmetric block-diagonal matrix as a structured shift. Properties of Hamiltonian and skew-Hamiltonian matrices are used to show that the shift can be effectively used in the iterative solution of skew-symmetric linear systems or nonsymmetric linear systems with a dominant skew-symmetric part. Eigenvalue analysis and some numerical experiments confirm our observations.