基于FOPDT模型的降阶自抗扰控制器调优方法

M. Srikanth, N. Yadaiah
{"title":"基于FOPDT模型的降阶自抗扰控制器调优方法","authors":"M. Srikanth, N. Yadaiah","doi":"10.1109/ICC54714.2021.9703133","DOIUrl":null,"url":null,"abstract":"In this paper, the Reduced-order Active Disturbance Rejection Control (RADRC) is tuned with a new set of tuning rules based on the First Order Plus Dead-time plant models. The tuning rules are developed to achieve the desired robustness $(M_{s})$ level. The tuning process is carried out in two stages. In the first stage, a set of non-linear equations is formulated using the magnitude optimum method and are solved with the desired settling time requirement resulting in controller bandwidth $(\\omega_{c})$, observer bandwidth $(\\omega_{0})$ and high-frequency gain $(b_{0})$. The parameter $b_{0}$ is further adjusted to meet the robustness $(M_{s})$ and stability requirements. The data collected from stage-I is used as input to the next stage. In stage-II, tuning rules for $\\omega_{0}$ and $b_{0}$ are formulated in the form of a polynomial model. Finally, the proposed tuning rules are tested on standard benchmark systems and experimentally verified to control a DC motor.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"55 30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A magnitude optimum approach for tuning Reduced-order ADRC with FOPDT models\",\"authors\":\"M. Srikanth, N. Yadaiah\",\"doi\":\"10.1109/ICC54714.2021.9703133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Reduced-order Active Disturbance Rejection Control (RADRC) is tuned with a new set of tuning rules based on the First Order Plus Dead-time plant models. The tuning rules are developed to achieve the desired robustness $(M_{s})$ level. The tuning process is carried out in two stages. In the first stage, a set of non-linear equations is formulated using the magnitude optimum method and are solved with the desired settling time requirement resulting in controller bandwidth $(\\\\omega_{c})$, observer bandwidth $(\\\\omega_{0})$ and high-frequency gain $(b_{0})$. The parameter $b_{0}$ is further adjusted to meet the robustness $(M_{s})$ and stability requirements. The data collected from stage-I is used as input to the next stage. In stage-II, tuning rules for $\\\\omega_{0}$ and $b_{0}$ are formulated in the form of a polynomial model. Finally, the proposed tuning rules are tested on standard benchmark systems and experimentally verified to control a DC motor.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"55 30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于一阶加死区时间对象模型,采用一套新的自抗扰规则对降阶自抗扰控制进行了整定。开发了调优规则以达到期望的鲁棒性$(M_{s})$水平。调整过程分两个阶段进行。在第一阶段,使用幅度优化方法建立一组非线性方程,并根据所需的沉降时间要求进行求解,得到控制器带宽$(\omega_{c})$,观测器带宽$(\omega_{0})$和高频增益$(b_{0})$。进一步调整参数$b_{0}$以满足鲁棒性$(M_{s})$和稳定性要求。从第一阶段收集的数据用作下一阶段的输入。在阶段ii中,$\omega_{0}$和$b_{0}$的调谐规则以多项式模型的形式表示。最后,在标准基准系统上对所提出的整定规则进行了测试,并对直流电机的控制效果进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A magnitude optimum approach for tuning Reduced-order ADRC with FOPDT models
In this paper, the Reduced-order Active Disturbance Rejection Control (RADRC) is tuned with a new set of tuning rules based on the First Order Plus Dead-time plant models. The tuning rules are developed to achieve the desired robustness $(M_{s})$ level. The tuning process is carried out in two stages. In the first stage, a set of non-linear equations is formulated using the magnitude optimum method and are solved with the desired settling time requirement resulting in controller bandwidth $(\omega_{c})$, observer bandwidth $(\omega_{0})$ and high-frequency gain $(b_{0})$. The parameter $b_{0}$ is further adjusted to meet the robustness $(M_{s})$ and stability requirements. The data collected from stage-I is used as input to the next stage. In stage-II, tuning rules for $\omega_{0}$ and $b_{0}$ are formulated in the form of a polynomial model. Finally, the proposed tuning rules are tested on standard benchmark systems and experimentally verified to control a DC motor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信