基于高斯混合模型的森林火灾早期自动检测

Jiye Qian, Jin Fu, Jide Qian, Weibin Yang, Ke Wang, Pan Cao
{"title":"基于高斯混合模型的森林火灾早期自动检测","authors":"Jiye Qian, Jin Fu, Jide Qian, Weibin Yang, Ke Wang, Pan Cao","doi":"10.1109/ICCT.2018.8599908","DOIUrl":null,"url":null,"abstract":"Early forest fire detection is of great importance to avoid the huge damage of forests caused by fires. Early fire detection focuses on smoke detection. The proposed scheme of early fire detection is divided into two steps. Based on the slow spread of smoke, firstly a time delay parameter improves Gaussian mixture model for extracting candidate smoke regions. Then, two motion features of smoke, the rate of area change and motion style, are used to select smoke regions from the candidate regions. Our experiments verified the effectiveness of the proposed early fire detection scheme.","PeriodicalId":244952,"journal":{"name":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Early Forest Fire Detection Based on Gaussian Mixture Model\",\"authors\":\"Jiye Qian, Jin Fu, Jide Qian, Weibin Yang, Ke Wang, Pan Cao\",\"doi\":\"10.1109/ICCT.2018.8599908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early forest fire detection is of great importance to avoid the huge damage of forests caused by fires. Early fire detection focuses on smoke detection. The proposed scheme of early fire detection is divided into two steps. Based on the slow spread of smoke, firstly a time delay parameter improves Gaussian mixture model for extracting candidate smoke regions. Then, two motion features of smoke, the rate of area change and motion style, are used to select smoke regions from the candidate regions. Our experiments verified the effectiveness of the proposed early fire detection scheme.\",\"PeriodicalId\":244952,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2018.8599908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2018.8599908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

森林火灾的早期探测对于避免火灾对森林造成的巨大损失具有重要意义。早期的火灾探测以烟雾探测为主。提出的火灾早期探测方案分为两个步骤。基于烟雾扩散缓慢的特点,首先利用时延参数对高斯混合模型进行改进,提取候选烟雾区域;然后,利用烟雾的两个运动特征,即面积变化率和运动风格,从候选区域中选择烟雾区域。我们的实验验证了提出的早期火灾探测方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Early Forest Fire Detection Based on Gaussian Mixture Model
Early forest fire detection is of great importance to avoid the huge damage of forests caused by fires. Early fire detection focuses on smoke detection. The proposed scheme of early fire detection is divided into two steps. Based on the slow spread of smoke, firstly a time delay parameter improves Gaussian mixture model for extracting candidate smoke regions. Then, two motion features of smoke, the rate of area change and motion style, are used to select smoke regions from the candidate regions. Our experiments verified the effectiveness of the proposed early fire detection scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信