Zhenlun Yang, Kunquan Shi, A. Wu, Meiling Qiu, Xue-meng Wei
{"title":"基于粒子群优化和salp群算法的混合自学习方法","authors":"Zhenlun Yang, Kunquan Shi, A. Wu, Meiling Qiu, Xue-meng Wei","doi":"10.1109/ICICIP47338.2019.9012195","DOIUrl":null,"url":null,"abstract":"This paper presents a novel self-learning hybrid optimization algorithm based on the particle swarm optimization (PSO) algorithm and the salp swarm algorithm (SSA) algorithm, namely HSL-PSO-SSA, for solving the function optimization problems. In HSL-PSO-SSA, three search strategies based on the ideas of PSO and SSA are adopted and a probability model is designed to determine the probability of a search strategy being used to update an individual in the search population. The performance of the HSL-PSO-SSA is investigated on solving the unimodal and multimodal benchmark functions. From the experimental results, it is observed that the proposed HSL-PSO-SSA outperforms the compared algorithms including the standard PSO and the original SSA.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybird self-learning method based on particle swarm optimization and salp swarm algorithm\",\"authors\":\"Zhenlun Yang, Kunquan Shi, A. Wu, Meiling Qiu, Xue-meng Wei\",\"doi\":\"10.1109/ICICIP47338.2019.9012195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel self-learning hybrid optimization algorithm based on the particle swarm optimization (PSO) algorithm and the salp swarm algorithm (SSA) algorithm, namely HSL-PSO-SSA, for solving the function optimization problems. In HSL-PSO-SSA, three search strategies based on the ideas of PSO and SSA are adopted and a probability model is designed to determine the probability of a search strategy being used to update an individual in the search population. The performance of the HSL-PSO-SSA is investigated on solving the unimodal and multimodal benchmark functions. From the experimental results, it is observed that the proposed HSL-PSO-SSA outperforms the compared algorithms including the standard PSO and the original SSA.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybird self-learning method based on particle swarm optimization and salp swarm algorithm
This paper presents a novel self-learning hybrid optimization algorithm based on the particle swarm optimization (PSO) algorithm and the salp swarm algorithm (SSA) algorithm, namely HSL-PSO-SSA, for solving the function optimization problems. In HSL-PSO-SSA, three search strategies based on the ideas of PSO and SSA are adopted and a probability model is designed to determine the probability of a search strategy being used to update an individual in the search population. The performance of the HSL-PSO-SSA is investigated on solving the unimodal and multimodal benchmark functions. From the experimental results, it is observed that the proposed HSL-PSO-SSA outperforms the compared algorithms including the standard PSO and the original SSA.