云计算环境下基于分层虚拟k-均值方法的数据挖掘

T. R. G. Nair, K. Madhuri
{"title":"云计算环境下基于分层虚拟k-均值方法的数据挖掘","authors":"T. R. G. Nair, K. Madhuri","doi":"10.1109/CCIS.2011.6045065","DOIUrl":null,"url":null,"abstract":"State of the art research in data mining is focusing on loosely distributed regionalized large scale databases using cloud computing for business applications. Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Realization of maximum efficiency depends much on the initiation of accurate decision data mining. This paper presents a specific method of implementing k-means approach for data mining in such scenarios. In this approach data is geographically distributed in multiple regions formed under several virtual machines. The results show that hierarchical virtual k-means approach is an efficient mining scheme for cloud databases.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Data mining using hierarchical virtual k-means approach integrating data fragments in cloud computing environment\",\"authors\":\"T. R. G. Nair, K. Madhuri\",\"doi\":\"10.1109/CCIS.2011.6045065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State of the art research in data mining is focusing on loosely distributed regionalized large scale databases using cloud computing for business applications. Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Realization of maximum efficiency depends much on the initiation of accurate decision data mining. This paper presents a specific method of implementing k-means approach for data mining in such scenarios. In this approach data is geographically distributed in multiple regions formed under several virtual machines. The results show that hierarchical virtual k-means approach is an efficient mining scheme for cloud databases.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

数据挖掘的最新研究集中在使用云计算进行业务应用的松散分布、区域化的大规模数据库。与传统架构中典型数据库场景的使用相比,由于数据分布的动态结构,云计算在数据挖掘操作中提出了各种各样的挑战。实现最高效率在很大程度上取决于开始进行准确的决策数据挖掘。本文提出了在这种情况下实现k-means方法进行数据挖掘的具体方法。在这种方法中,数据在地理上分布在多个虚拟机下形成的多个区域中。结果表明,分层虚拟k-均值方法是一种有效的云数据库挖掘方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining using hierarchical virtual k-means approach integrating data fragments in cloud computing environment
State of the art research in data mining is focusing on loosely distributed regionalized large scale databases using cloud computing for business applications. Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Realization of maximum efficiency depends much on the initiation of accurate decision data mining. This paper presents a specific method of implementing k-means approach for data mining in such scenarios. In this approach data is geographically distributed in multiple regions formed under several virtual machines. The results show that hierarchical virtual k-means approach is an efficient mining scheme for cloud databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信