基于局部纹理描述符和形状尺寸特征的枣果自动分类

Muhammad Ghulam
{"title":"基于局部纹理描述符和形状尺寸特征的枣果自动分类","authors":"Muhammad Ghulam","doi":"10.1109/EMS.2014.63","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.","PeriodicalId":350614,"journal":{"name":"European Symposium on Computer Modeling and Simulation","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Date Fruit Classification by Using Local Texture Descriptors and Shape-Size Features\",\"authors\":\"Muhammad Ghulam\",\"doi\":\"10.1109/EMS.2014.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.\",\"PeriodicalId\":350614,\"journal\":{\"name\":\"European Symposium on Computer Modeling and Simulation\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Symposium on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2014.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Date Fruit Classification by Using Local Texture Descriptors and Shape-Size Features
In this paper, we propose a system of automatically classifying different types of dates from their images. Different dates have various distinguished features that can be useful to recognize a particular date. These features include color, texture, and shape. In the proposed system, a color image of a date is decomposed into its color components. Then, local texture descriptor in the form of local binary pattern (LBP) or Weber local descriptor (WLD) histogram is applied to each of the components to encode the texture pattern of the date. The texture patterns from all the components are fused to describe the image. Fisher discrimination ratio (FDR) based feature selection is utilized to reduce the dimensionality of the feature set. Size and shape features are appended to the texture descriptors to fully describe the date. As a classifier, we use support vector machines. The proposed system achieves more than 99% accuracy to classify the dates and outperforms previous method of dates classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信