线性多变量分布式系统的镇定、跟踪与抗干扰

F. Callier, C. Desoer
{"title":"线性多变量分布式系统的镇定、跟踪与抗干扰","authors":"F. Callier, C. Desoer","doi":"10.1109/CDC.1978.267981","DOIUrl":null,"url":null,"abstract":"The paper describes the algebra ß(¿0) of transfer functions of distributed systems; ß(¿0) generalizes the algebra of proper rational functions [see, e.g. 7,8]. The first theorem generalizes for the distributed case a result of Youla et al. [10]: any plant ¿ can be stabilized by pre-or post-compensation and the closed-loop natural frequencies can be preassigned in C¿ 0+, the domain of definition of ¿. The second theorem generalizes for the distributed case the known results of the lumped case [for a detailed review, see 10]: stabilization and asymptotically zero tracking-error can be achieved by a precompensator with elements in ß (¿0). Furthermore, the stabilization and tracking is robust.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Stabilization, tracking and disturbance rejection in linear multivariable distributed systems\",\"authors\":\"F. Callier, C. Desoer\",\"doi\":\"10.1109/CDC.1978.267981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the algebra ß(¿0) of transfer functions of distributed systems; ß(¿0) generalizes the algebra of proper rational functions [see, e.g. 7,8]. The first theorem generalizes for the distributed case a result of Youla et al. [10]: any plant ¿ can be stabilized by pre-or post-compensation and the closed-loop natural frequencies can be preassigned in C¿ 0+, the domain of definition of ¿. The second theorem generalizes for the distributed case the known results of the lumped case [for a detailed review, see 10]: stabilization and asymptotically zero tracking-error can be achieved by a precompensator with elements in ß (¿0). Furthermore, the stabilization and tracking is robust.\",\"PeriodicalId\":375119,\"journal\":{\"name\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1978.267981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了分布式系统传递函数的代数ß(¿0);ß(¿0)推广了固有有理函数的代数[参见,例如7,8]。第一个定理推广了Youla et al.[10]在分布式情况下的结果:任何对象都可以通过预补偿或后补偿来稳定,并且闭环固有频率可以在C¿0+中预分配,C¿0+是C¿0+的定义域。第二个定理推广了分布情况下集总情况的已知结果[详细回顾,见10]:稳定性和渐近零跟踪误差可以通过具有ß(¿0)元素的预补偿器来实现。此外,该系统具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization, tracking and disturbance rejection in linear multivariable distributed systems
The paper describes the algebra ß(¿0) of transfer functions of distributed systems; ß(¿0) generalizes the algebra of proper rational functions [see, e.g. 7,8]. The first theorem generalizes for the distributed case a result of Youla et al. [10]: any plant ¿ can be stabilized by pre-or post-compensation and the closed-loop natural frequencies can be preassigned in C¿ 0+, the domain of definition of ¿. The second theorem generalizes for the distributed case the known results of the lumped case [for a detailed review, see 10]: stabilization and asymptotically zero tracking-error can be achieved by a precompensator with elements in ß (¿0). Furthermore, the stabilization and tracking is robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信