基于卷积神经网络和堆叠自编码器的运动图像脑机接口

Roya Arabshahi, M. Rouhani
{"title":"基于卷积神经网络和堆叠自编码器的运动图像脑机接口","authors":"Roya Arabshahi, M. Rouhani","doi":"10.1109/ICCKE50421.2020.9303717","DOIUrl":null,"url":null,"abstract":"In this research, we are investigating Convolutional Neural Networks (CNN) and Stacked Auto Encoders (SAE) to classify EEG Motor Imagery signals. Also, we use Cohen Class Distribution (CCD) to calculate time and frequency features derived from EEG signals to feed to our network. Using this combination of CNN and SAE decrease the data dimensions. the best accuracy percentage according to our method, in an average manner, is 82%. The proposed approach was applied to the dataset IVa from BCI Competition III, a multichannel 2-class motor-imagery dataset obtained from 5 healthy subjects","PeriodicalId":402043,"journal":{"name":"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A convolutional neural network and stacked autoencoders approach for motor imagery based brain-computer interface\",\"authors\":\"Roya Arabshahi, M. Rouhani\",\"doi\":\"10.1109/ICCKE50421.2020.9303717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we are investigating Convolutional Neural Networks (CNN) and Stacked Auto Encoders (SAE) to classify EEG Motor Imagery signals. Also, we use Cohen Class Distribution (CCD) to calculate time and frequency features derived from EEG signals to feed to our network. Using this combination of CNN and SAE decrease the data dimensions. the best accuracy percentage according to our method, in an average manner, is 82%. The proposed approach was applied to the dataset IVa from BCI Competition III, a multichannel 2-class motor-imagery dataset obtained from 5 healthy subjects\",\"PeriodicalId\":402043,\"journal\":{\"name\":\"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE50421.2020.9303717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE50421.2020.9303717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们正在研究卷积神经网络(CNN)和堆叠自动编码器(SAE)对EEG运动图像信号进行分类。此外,我们使用科恩类分布(CCD)来计算从脑电图信号中得到的时间和频率特征,并将其馈送到我们的网络。使用CNN和SAE的这种组合可以降低数据维度。根据我们的方法,在平均情况下,最好的准确率是82%。该方法应用于来自BCI竞赛III的数据集IVa,这是一个来自5名健康受试者的多通道2类运动图像数据集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convolutional neural network and stacked autoencoders approach for motor imagery based brain-computer interface
In this research, we are investigating Convolutional Neural Networks (CNN) and Stacked Auto Encoders (SAE) to classify EEG Motor Imagery signals. Also, we use Cohen Class Distribution (CCD) to calculate time and frequency features derived from EEG signals to feed to our network. Using this combination of CNN and SAE decrease the data dimensions. the best accuracy percentage according to our method, in an average manner, is 82%. The proposed approach was applied to the dataset IVa from BCI Competition III, a multichannel 2-class motor-imagery dataset obtained from 5 healthy subjects
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信