Ibon Gracia, Dimitris Boskos, L. Laurenti, M. Mazo
{"title":"切换随机系统的分布鲁棒策略综合","authors":"Ibon Gracia, Dimitris Boskos, L. Laurenti, M. Mazo","doi":"10.1145/3575870.3587127","DOIUrl":null,"url":null,"abstract":"We present a novel framework for formal control of uncertain discrete-time switched stochastic systems against probabilistic reach-avoid specifications. In particular, we consider stochastic systems with additive noise, whose distribution lies in an ambiguity set of distributions that are ε − close to a nominal one according to the Wasserstein distance. For this class of systems we derive control synthesis algorithms that are robust against all these distributions and maximize the probability of satisfying a reach-avoid specification, defined as the probability of reaching a goal region while being safe. The framework we present first learns an abstraction of a switched stochastic system as a robust Markov decision process (robust MDP) by accounting for both the stochasticity of the system and the uncertainty in the noise distribution. Then, it synthesizes a strategy on the resulting robust MDP that maximizes the probability of satisfying the property and is robust to all uncertainty in the system. This strategy is then refined into a switching strategy for the original stochastic system. By exploiting tools from optimal transport and stochastic programming, we show that synthesizing such a strategy reduces to solving a set of linear programs, thus guaranteeing efficiency. We experimentally validate the efficacy of our framework on various case studies, including both linear and non-linear switched stochastic systems. Our results represent the first formal approach for control synthesis of stochastic systems with uncertain noise distribution.","PeriodicalId":426801,"journal":{"name":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Distributionally Robust Strategy Synthesis for Switched Stochastic Systems\",\"authors\":\"Ibon Gracia, Dimitris Boskos, L. Laurenti, M. Mazo\",\"doi\":\"10.1145/3575870.3587127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework for formal control of uncertain discrete-time switched stochastic systems against probabilistic reach-avoid specifications. In particular, we consider stochastic systems with additive noise, whose distribution lies in an ambiguity set of distributions that are ε − close to a nominal one according to the Wasserstein distance. For this class of systems we derive control synthesis algorithms that are robust against all these distributions and maximize the probability of satisfying a reach-avoid specification, defined as the probability of reaching a goal region while being safe. The framework we present first learns an abstraction of a switched stochastic system as a robust Markov decision process (robust MDP) by accounting for both the stochasticity of the system and the uncertainty in the noise distribution. Then, it synthesizes a strategy on the resulting robust MDP that maximizes the probability of satisfying the property and is robust to all uncertainty in the system. This strategy is then refined into a switching strategy for the original stochastic system. By exploiting tools from optimal transport and stochastic programming, we show that synthesizing such a strategy reduces to solving a set of linear programs, thus guaranteeing efficiency. We experimentally validate the efficacy of our framework on various case studies, including both linear and non-linear switched stochastic systems. Our results represent the first formal approach for control synthesis of stochastic systems with uncertain noise distribution.\",\"PeriodicalId\":426801,\"journal\":{\"name\":\"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575870.3587127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575870.3587127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributionally Robust Strategy Synthesis for Switched Stochastic Systems
We present a novel framework for formal control of uncertain discrete-time switched stochastic systems against probabilistic reach-avoid specifications. In particular, we consider stochastic systems with additive noise, whose distribution lies in an ambiguity set of distributions that are ε − close to a nominal one according to the Wasserstein distance. For this class of systems we derive control synthesis algorithms that are robust against all these distributions and maximize the probability of satisfying a reach-avoid specification, defined as the probability of reaching a goal region while being safe. The framework we present first learns an abstraction of a switched stochastic system as a robust Markov decision process (robust MDP) by accounting for both the stochasticity of the system and the uncertainty in the noise distribution. Then, it synthesizes a strategy on the resulting robust MDP that maximizes the probability of satisfying the property and is robust to all uncertainty in the system. This strategy is then refined into a switching strategy for the original stochastic system. By exploiting tools from optimal transport and stochastic programming, we show that synthesizing such a strategy reduces to solving a set of linear programs, thus guaranteeing efficiency. We experimentally validate the efficacy of our framework on various case studies, including both linear and non-linear switched stochastic systems. Our results represent the first formal approach for control synthesis of stochastic systems with uncertain noise distribution.