结合金正弦和Tent混沌扰动的改进海鸥优化算法

Ange Chen, Hanzhang Peng, Yu Zhong, Huimin Ren
{"title":"结合金正弦和Tent混沌扰动的改进海鸥优化算法","authors":"Ange Chen, Hanzhang Peng, Yu Zhong, Huimin Ren","doi":"10.1109/IAEAC54830.2022.9929543","DOIUrl":null,"url":null,"abstract":"Aiming at the defects of slow convergence and easy to fall into local optimum of the seagull optimization algorithm, this paper proposes an improved seagull optimization algorithm incorporating golden sine and chaotic perturbation of tent mapping. This algorithm enhances the global search ability through tent chaotic disturbance and Levy flight, accelerates the convergence through golden sine to improve the local search ability. In this paper, the original fixed convergence factor is transformed into a nonlinear decreasing convergence factor to improve the optimization efficiency. The performance is tested on the benchmark functions, and it is used to solving the multiprocessor task scheduling problem. Compared with other algorithms, experiments show that TGSOA has significant improvement over other algorithms in terms of convergence speed and robustness.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Seagull Optimization Algorithm Incorporating Golden Sine and Tent Chaotic Perturbations\",\"authors\":\"Ange Chen, Hanzhang Peng, Yu Zhong, Huimin Ren\",\"doi\":\"10.1109/IAEAC54830.2022.9929543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the defects of slow convergence and easy to fall into local optimum of the seagull optimization algorithm, this paper proposes an improved seagull optimization algorithm incorporating golden sine and chaotic perturbation of tent mapping. This algorithm enhances the global search ability through tent chaotic disturbance and Levy flight, accelerates the convergence through golden sine to improve the local search ability. In this paper, the original fixed convergence factor is transformed into a nonlinear decreasing convergence factor to improve the optimization efficiency. The performance is tested on the benchmark functions, and it is used to solving the multiprocessor task scheduling problem. Compared with other algorithms, experiments show that TGSOA has significant improvement over other algorithms in terms of convergence speed and robustness.\",\"PeriodicalId\":349113,\"journal\":{\"name\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC54830.2022.9929543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对海鸥优化算法收敛速度慢、容易陷入局部最优的缺陷,提出了一种结合金正弦和帐篷映射混沌摄动的改进海鸥优化算法。该算法通过tent混沌扰动和Levy飞行增强全局搜索能力,通过金正弦加速收敛提高局部搜索能力。为了提高优化效率,本文将原有的固定收敛因子转化为非线性递减收敛因子。在基准函数上进行了性能测试,并将其用于解决多处理器任务调度问题。与其他算法相比,实验表明TGSOA在收敛速度和鲁棒性方面都比其他算法有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Seagull Optimization Algorithm Incorporating Golden Sine and Tent Chaotic Perturbations
Aiming at the defects of slow convergence and easy to fall into local optimum of the seagull optimization algorithm, this paper proposes an improved seagull optimization algorithm incorporating golden sine and chaotic perturbation of tent mapping. This algorithm enhances the global search ability through tent chaotic disturbance and Levy flight, accelerates the convergence through golden sine to improve the local search ability. In this paper, the original fixed convergence factor is transformed into a nonlinear decreasing convergence factor to improve the optimization efficiency. The performance is tested on the benchmark functions, and it is used to solving the multiprocessor task scheduling problem. Compared with other algorithms, experiments show that TGSOA has significant improvement over other algorithms in terms of convergence speed and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信