NSGA-II在输电系统中降低电压偏差、功率损耗和控制动作的应用

Y. R. Hernandez, T. Hiyama
{"title":"NSGA-II在输电系统中降低电压偏差、功率损耗和控制动作的应用","authors":"Y. R. Hernandez, T. Hiyama","doi":"10.1109/TD-ASIA.2009.5357016","DOIUrl":null,"url":null,"abstract":"A multi-objective genetic algorithm, based on NSGA-II, is implemented to find an optimal condition of minimum voltage deviations, minimum power losses and minimum number of control actions of a transmission network system. The system used as model is a IEEE 14-bus system. Generators, tap position of transformers and a shunt capacitor are the devices to controlling. The results show a succesful performance of the implemented algorithm. Also, different probability of mutation factors are compared and it is proved that a more important mutation factor can improve the velocity of convergence without fall into a random searching.","PeriodicalId":131589,"journal":{"name":"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of NSGA-II for reducing voltage deviations, power losses and control actions in a transmission power system\",\"authors\":\"Y. R. Hernandez, T. Hiyama\",\"doi\":\"10.1109/TD-ASIA.2009.5357016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-objective genetic algorithm, based on NSGA-II, is implemented to find an optimal condition of minimum voltage deviations, minimum power losses and minimum number of control actions of a transmission network system. The system used as model is a IEEE 14-bus system. Generators, tap position of transformers and a shunt capacitor are the devices to controlling. The results show a succesful performance of the implemented algorithm. Also, different probability of mutation factors are compared and it is proved that a more important mutation factor can improve the velocity of convergence without fall into a random searching.\",\"PeriodicalId\":131589,\"journal\":{\"name\":\"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TD-ASIA.2009.5357016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Transmission & Distribution Conference & Exposition: Asia and Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TD-ASIA.2009.5357016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用基于NSGA-II的多目标遗传算法求解输电网系统电压偏差最小、功率损耗最小、控制动作数最少的最优条件。作为模型的系统是IEEE 14总线系统。发电机、变压器分接位置和并联电容器是控制装置。结果表明,所实现的算法性能良好。同时,比较了突变因子的不同概率,证明了一个更重要的突变因子可以提高收敛速度,而不会陷入随机搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of NSGA-II for reducing voltage deviations, power losses and control actions in a transmission power system
A multi-objective genetic algorithm, based on NSGA-II, is implemented to find an optimal condition of minimum voltage deviations, minimum power losses and minimum number of control actions of a transmission network system. The system used as model is a IEEE 14-bus system. Generators, tap position of transformers and a shunt capacitor are the devices to controlling. The results show a succesful performance of the implemented algorithm. Also, different probability of mutation factors are compared and it is proved that a more important mutation factor can improve the velocity of convergence without fall into a random searching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信