自动数据聚类的混合共生生物搜索算法

V. Rajah, Ezugwu E. Absalom
{"title":"自动数据聚类的混合共生生物搜索算法","authors":"V. Rajah, Ezugwu E. Absalom","doi":"10.1109/ICTAS47918.2020.234001","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an essential tool in data mining. Several clustering algorithms have been proposed and implemented for which most are able to find the good quality or optimal clustering solutions. However, most of these algorithms still depend on the number of a cluster being provided a priori. In dealing with real-life problems, the number of clusters is unknown and determining the optimal number of clusters for a large density and high dimensionality dataset is quite a difficult task to handle. This paper, therefore, proposes five new hybrid symbiotic organism search algorithms to automatically partition datasets without any prior information regarding the number of clusters. Furthermore, the hybrid algorithms will be evaluated in terms of solution quality using the Davies–Bouldin clustering validity index. The simulation results show that the performance of the hybrid symbiotic organisms search particle swarm optimization algorithm is superior to the other proposed hybrid algorithms.","PeriodicalId":431012,"journal":{"name":"2020 Conference on Information Communications Technology and Society (ICTAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hybrid Symbiotic Organism Search algorithms for Automatic Data Clustering\",\"authors\":\"V. Rajah, Ezugwu E. Absalom\",\"doi\":\"10.1109/ICTAS47918.2020.234001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is an essential tool in data mining. Several clustering algorithms have been proposed and implemented for which most are able to find the good quality or optimal clustering solutions. However, most of these algorithms still depend on the number of a cluster being provided a priori. In dealing with real-life problems, the number of clusters is unknown and determining the optimal number of clusters for a large density and high dimensionality dataset is quite a difficult task to handle. This paper, therefore, proposes five new hybrid symbiotic organism search algorithms to automatically partition datasets without any prior information regarding the number of clusters. Furthermore, the hybrid algorithms will be evaluated in terms of solution quality using the Davies–Bouldin clustering validity index. The simulation results show that the performance of the hybrid symbiotic organisms search particle swarm optimization algorithm is superior to the other proposed hybrid algorithms.\",\"PeriodicalId\":431012,\"journal\":{\"name\":\"2020 Conference on Information Communications Technology and Society (ICTAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Conference on Information Communications Technology and Society (ICTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAS47918.2020.234001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Conference on Information Communications Technology and Society (ICTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAS47918.2020.234001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

聚类分析是数据挖掘中的重要工具。人们提出并实现了几种聚类算法,其中大多数算法都能找到质量好的或最优的聚类解。然而,这些算法中的大多数仍然依赖于先验提供的集群数量。在处理现实问题时,聚类的数量是未知的,对于大密度、高维的数据集,确定最优的聚类数量是一项相当困难的任务。因此,本文提出了五种新的混合共生生物搜索算法来自动划分数据集,而不需要任何关于聚类数量的先验信息。此外,将使用Davies-Bouldin聚类有效性指数来评估混合算法的解质量。仿真结果表明,混合共生生物搜索粒子群优化算法的性能优于其他混合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Symbiotic Organism Search algorithms for Automatic Data Clustering
Cluster analysis is an essential tool in data mining. Several clustering algorithms have been proposed and implemented for which most are able to find the good quality or optimal clustering solutions. However, most of these algorithms still depend on the number of a cluster being provided a priori. In dealing with real-life problems, the number of clusters is unknown and determining the optimal number of clusters for a large density and high dimensionality dataset is quite a difficult task to handle. This paper, therefore, proposes five new hybrid symbiotic organism search algorithms to automatically partition datasets without any prior information regarding the number of clusters. Furthermore, the hybrid algorithms will be evaluated in terms of solution quality using the Davies–Bouldin clustering validity index. The simulation results show that the performance of the hybrid symbiotic organisms search particle swarm optimization algorithm is superior to the other proposed hybrid algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信