基于会话式CBR的智能构件检索系统

Mingyang Gu, Xin Tong
{"title":"基于会话式CBR的智能构件检索系统","authors":"Mingyang Gu, Xin Tong","doi":"10.1109/CMPSAC.2004.1342670","DOIUrl":null,"url":null,"abstract":"One difficulty in component retrieval comes from users' incapability to well define their queries. In this paper, we propose a conversational component retrieval model (CCRM) to alleviate this difficulty. In CCRM, a knowledge-intensive conversational case-based reasoning method is adopted to infer potential knowledge from current known knowledge, calculate the context-based semantic similarities between users' queries and stored components, and prompt users the most discriminative questions to extract more information to refine their component queries interactively and incrementally.","PeriodicalId":355273,"journal":{"name":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An intelligent component retrieval system using conversational CBR\",\"authors\":\"Mingyang Gu, Xin Tong\",\"doi\":\"10.1109/CMPSAC.2004.1342670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One difficulty in component retrieval comes from users' incapability to well define their queries. In this paper, we propose a conversational component retrieval model (CCRM) to alleviate this difficulty. In CCRM, a knowledge-intensive conversational case-based reasoning method is adopted to infer potential knowledge from current known knowledge, calculate the context-based semantic similarities between users' queries and stored components, and prompt users the most discriminative questions to extract more information to refine their component queries interactively and incrementally.\",\"PeriodicalId\":355273,\"journal\":{\"name\":\"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPSAC.2004.1342670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2004.1342670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

组件检索的一个困难来自于用户不能很好地定义他们的查询。在本文中,我们提出了一个会话组件检索模型(CCRM)来缓解这一困难。在CCRM中,采用知识密集型的基于会话案例的推理方法,从当前已知的知识中推断出潜在的知识,计算用户查询与存储组件之间基于上下文的语义相似度,并提示用户最具判别性的问题,以交互和增量的方式提取更多信息,以改进其组件查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent component retrieval system using conversational CBR
One difficulty in component retrieval comes from users' incapability to well define their queries. In this paper, we propose a conversational component retrieval model (CCRM) to alleviate this difficulty. In CCRM, a knowledge-intensive conversational case-based reasoning method is adopted to infer potential knowledge from current known knowledge, calculate the context-based semantic similarities between users' queries and stored components, and prompt users the most discriminative questions to extract more information to refine their component queries interactively and incrementally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信