通过气候数据的多变量时间序列分类预测克里米亚-刚果出血热暴发

Jonathan Harris, Thilanka Munasinghe, Heidi Tubbs, A. Anyamba
{"title":"通过气候数据的多变量时间序列分类预测克里米亚-刚果出血热暴发","authors":"Jonathan Harris, Thilanka Munasinghe, Heidi Tubbs, A. Anyamba","doi":"10.1145/3545729.3545772","DOIUrl":null,"url":null,"abstract":"Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne disease that is spread by ticks (specifically of the Hyalomma marginatum species) and is influenced by climate patterns. CCHF has a fatality rate ranging from 3-50% for humans and is a high-priority disease among international health organizations. We hypothesize that temporal variability in climate variables (temperature and precipitation) can be used to predict CCHF outbreaks in a particular region. There is a need to analyze the effects of climatic patterns on the spread of CCHF to allow high-risk countries to better prepare for possible outbreaks. We propose an approach that utilizes multivariate time-series classification (MTSC) to detect temporal climatic patterns and predicts reports of CCHF outbreaks within Pakistan with a 91.5% test accuracy.","PeriodicalId":432782,"journal":{"name":"Proceedings of the 6th International Conference on Medical and Health Informatics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Crimean-Congo Hemorrhagic Fever Outbreaks via Multivariate Time-Series Classification of Climate Data\",\"authors\":\"Jonathan Harris, Thilanka Munasinghe, Heidi Tubbs, A. Anyamba\",\"doi\":\"10.1145/3545729.3545772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne disease that is spread by ticks (specifically of the Hyalomma marginatum species) and is influenced by climate patterns. CCHF has a fatality rate ranging from 3-50% for humans and is a high-priority disease among international health organizations. We hypothesize that temporal variability in climate variables (temperature and precipitation) can be used to predict CCHF outbreaks in a particular region. There is a need to analyze the effects of climatic patterns on the spread of CCHF to allow high-risk countries to better prepare for possible outbreaks. We propose an approach that utilizes multivariate time-series classification (MTSC) to detect temporal climatic patterns and predicts reports of CCHF outbreaks within Pakistan with a 91.5% test accuracy.\",\"PeriodicalId\":432782,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Medical and Health Informatics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Medical and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545729.3545772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Medical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545729.3545772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克里米亚-刚果出血热(CCHF)是一种媒介传播的疾病,由蜱虫(特别是边缘透明体蜱)传播,并受气候模式影响。CCHF对人类的致死率在3-50%之间,是国际卫生组织高度重视的疾病。我们假设气候变量(温度和降水)的时间变异性可用于预测特定地区的CCHF暴发。有必要分析气候模式对CCHF传播的影响,使高风险国家能够更好地为可能的疫情做好准备。我们提出了一种利用多变量时间序列分类(MTSC)来检测时间气候模式并预测巴基斯坦境内CCHF暴发报告的方法,测试准确率为91.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Crimean-Congo Hemorrhagic Fever Outbreaks via Multivariate Time-Series Classification of Climate Data
Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne disease that is spread by ticks (specifically of the Hyalomma marginatum species) and is influenced by climate patterns. CCHF has a fatality rate ranging from 3-50% for humans and is a high-priority disease among international health organizations. We hypothesize that temporal variability in climate variables (temperature and precipitation) can be used to predict CCHF outbreaks in a particular region. There is a need to analyze the effects of climatic patterns on the spread of CCHF to allow high-risk countries to better prepare for possible outbreaks. We propose an approach that utilizes multivariate time-series classification (MTSC) to detect temporal climatic patterns and predicts reports of CCHF outbreaks within Pakistan with a 91.5% test accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信