{"title":"土耳其Twitter数据情感分析特征选择方法比较","authors":"Tuba Parlar, E. Saraç, S. A. Özel","doi":"10.1109/SIU.2017.7960388","DOIUrl":null,"url":null,"abstract":"The Internet and social media provide a major source of information about people's opinions. Due to the rapidly growing number of online documents, it becomes both time-consuming and hard task to obtain and analyze the desired opinionated information. Sentiment analysis is the classification of sentiments expressed in documents. To improve classification perfromance feature selection methods which help to identify the most valuable features are generally applied. In this paper, we compare the performance of four feature selection methods namely Chi-square, Information Gain, Query Expansion Ranking, and Ant Colony Optimization using Maximum Entropi Modeling classification algorithm over Turkish Twitter dataset. Therefore, the effects of feature selection methods over the performance of sentiment analysis of Turkish Twitter data are evaluated. Experimental results show that Query Expansion Ranking and Ant Colony Optimization methods outperform other traditional feature selection methods for sentiment analysis.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of feature selection methods for sentiment analysis on Turkish Twitter data\",\"authors\":\"Tuba Parlar, E. Saraç, S. A. Özel\",\"doi\":\"10.1109/SIU.2017.7960388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet and social media provide a major source of information about people's opinions. Due to the rapidly growing number of online documents, it becomes both time-consuming and hard task to obtain and analyze the desired opinionated information. Sentiment analysis is the classification of sentiments expressed in documents. To improve classification perfromance feature selection methods which help to identify the most valuable features are generally applied. In this paper, we compare the performance of four feature selection methods namely Chi-square, Information Gain, Query Expansion Ranking, and Ant Colony Optimization using Maximum Entropi Modeling classification algorithm over Turkish Twitter dataset. Therefore, the effects of feature selection methods over the performance of sentiment analysis of Turkish Twitter data are evaluated. Experimental results show that Query Expansion Ranking and Ant Colony Optimization methods outperform other traditional feature selection methods for sentiment analysis.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of feature selection methods for sentiment analysis on Turkish Twitter data
The Internet and social media provide a major source of information about people's opinions. Due to the rapidly growing number of online documents, it becomes both time-consuming and hard task to obtain and analyze the desired opinionated information. Sentiment analysis is the classification of sentiments expressed in documents. To improve classification perfromance feature selection methods which help to identify the most valuable features are generally applied. In this paper, we compare the performance of four feature selection methods namely Chi-square, Information Gain, Query Expansion Ranking, and Ant Colony Optimization using Maximum Entropi Modeling classification algorithm over Turkish Twitter dataset. Therefore, the effects of feature selection methods over the performance of sentiment analysis of Turkish Twitter data are evaluated. Experimental results show that Query Expansion Ranking and Ant Colony Optimization methods outperform other traditional feature selection methods for sentiment analysis.