具有非同步多摄像头设置的视觉里程计用于智能车辆应用

Rawia Mhiri, P. Vasseur, S. Mousset, R. Boutteau, A. Bensrhair
{"title":"具有非同步多摄像头设置的视觉里程计用于智能车辆应用","authors":"Rawia Mhiri, P. Vasseur, S. Mousset, R. Boutteau, A. Bensrhair","doi":"10.1109/IVS.2014.6856533","DOIUrl":null,"url":null,"abstract":"This paper presents a visual odometry with metric scale estimation of a multi-camera system in challenging un-synchronized setup. The intended application is in the field of intelligent vehicles. We propose a new algorithm named “triangle-based” method. The proposed algorithm employs the information from both extrinsic and intrinsic parameters of calibrated cameras. We assume that the trajectory between two consecutive frames of a camera is a linear segment (straight trajectory). The relative camera poses are estimated via classical Structure-from-Motion. Then, the scale factors are computed by imposing the known extrinsic parameters and the linearity assumption. We verify the validity of our method both in simulated and real conditions. For the real world, the motion trajectory estimated for image sequence of two cameras from KITTI dataset is compared against the GPS/INS ground truth.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Visual odometry with unsynchronized multi-cameras setup for intelligent vehicle application\",\"authors\":\"Rawia Mhiri, P. Vasseur, S. Mousset, R. Boutteau, A. Bensrhair\",\"doi\":\"10.1109/IVS.2014.6856533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a visual odometry with metric scale estimation of a multi-camera system in challenging un-synchronized setup. The intended application is in the field of intelligent vehicles. We propose a new algorithm named “triangle-based” method. The proposed algorithm employs the information from both extrinsic and intrinsic parameters of calibrated cameras. We assume that the trajectory between two consecutive frames of a camera is a linear segment (straight trajectory). The relative camera poses are estimated via classical Structure-from-Motion. Then, the scale factors are computed by imposing the known extrinsic parameters and the linearity assumption. We verify the validity of our method both in simulated and real conditions. For the real world, the motion trajectory estimated for image sequence of two cameras from KITTI dataset is compared against the GPS/INS ground truth.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种具有度量尺度估计的多摄像机系统在具有挑战性的非同步设置中的视觉里程计。预期应用于智能车辆领域。我们提出了一种新的算法,称为“基于三角形”的方法。该算法同时利用了标定相机的外在参数和内在参数信息。我们假设摄像机的两个连续帧之间的轨迹是一个直线段(直线轨迹)。通过经典的运动结构估计相对相机姿态。然后,通过施加已知的外在参数和线性假设,计算出尺度因子。在仿真和实际条件下验证了该方法的有效性。在现实世界中,将KITTI数据集中两台相机图像序列估计的运动轨迹与GPS/INS的地面真值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual odometry with unsynchronized multi-cameras setup for intelligent vehicle application
This paper presents a visual odometry with metric scale estimation of a multi-camera system in challenging un-synchronized setup. The intended application is in the field of intelligent vehicles. We propose a new algorithm named “triangle-based” method. The proposed algorithm employs the information from both extrinsic and intrinsic parameters of calibrated cameras. We assume that the trajectory between two consecutive frames of a camera is a linear segment (straight trajectory). The relative camera poses are estimated via classical Structure-from-Motion. Then, the scale factors are computed by imposing the known extrinsic parameters and the linearity assumption. We verify the validity of our method both in simulated and real conditions. For the real world, the motion trajectory estimated for image sequence of two cameras from KITTI dataset is compared against the GPS/INS ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信