NDVI AVHRR/NOAA时间序列分类的特征提取

W. L. da Silva, R. R. V. Gonçalves, A. S. Siqueira, J. Zullo, F. A. M. G. Neto
{"title":"NDVI AVHRR/NOAA时间序列分类的特征提取","authors":"W. L. da Silva, R. R. V. Gonçalves, A. S. Siqueira, J. Zullo, F. A. M. G. Neto","doi":"10.1109/MULTI-TEMP.2011.6005091","DOIUrl":null,"url":null,"abstract":"One of the biggest problems of agribusiness in Brazil is related to estimation and forecasting of agricultural crops. In this problem, time series classification enters as a way to help production estimation. In this paper, we are concerned with the development of an automatic classifier that identifies the areas covered with the sugarcane culture by using Normalized Difference Vegetation Index (NDVI) time series, from the AVHRR/NOAA data warehouse of Center of Meteorological and Climatic Research Applied to Agriculture (CEPAGRI). We assumed that a multidimensional space generated by information obtained in the harmonics is a appropriate space to study the similarity between time series. Here we used the word features of a series to refer the coefficients extracted by time series in Fourier decomposition. The proposed methodology has shown to be efficient with a high success rate for the classification of the culture of sugarcane in images from Jaboticabal city, in Brazil, 2004/2005.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature extraction for NDVI AVHRR/NOAA time series classification\",\"authors\":\"W. L. da Silva, R. R. V. Gonçalves, A. S. Siqueira, J. Zullo, F. A. M. G. Neto\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the biggest problems of agribusiness in Brazil is related to estimation and forecasting of agricultural crops. In this problem, time series classification enters as a way to help production estimation. In this paper, we are concerned with the development of an automatic classifier that identifies the areas covered with the sugarcane culture by using Normalized Difference Vegetation Index (NDVI) time series, from the AVHRR/NOAA data warehouse of Center of Meteorological and Climatic Research Applied to Agriculture (CEPAGRI). We assumed that a multidimensional space generated by information obtained in the harmonics is a appropriate space to study the similarity between time series. Here we used the word features of a series to refer the coefficients extracted by time series in Fourier decomposition. The proposed methodology has shown to be efficient with a high success rate for the classification of the culture of sugarcane in images from Jaboticabal city, in Brazil, 2004/2005.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

巴西农业企业最大的问题之一与农作物的估计和预测有关。在这个问题中,时间序列分类作为一种帮助生产估计的方法进入。本文利用中国农业科学院气象气候研究中心(CEPAGRI) AVHRR/NOAA数据仓库中的归一化植被指数(NDVI)时间序列,开发了一种自动识别甘蔗种植面积的分类器。我们假设由谐波信息生成的多维空间是研究时间序列相似性的合适空间。在傅里叶分解中,我们使用“序列特征”一词来指代由时间序列提取的系数。所提出的方法在2004/2005年巴西Jaboticabal市的甘蔗栽培图像分类中显示出很高的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction for NDVI AVHRR/NOAA time series classification
One of the biggest problems of agribusiness in Brazil is related to estimation and forecasting of agricultural crops. In this problem, time series classification enters as a way to help production estimation. In this paper, we are concerned with the development of an automatic classifier that identifies the areas covered with the sugarcane culture by using Normalized Difference Vegetation Index (NDVI) time series, from the AVHRR/NOAA data warehouse of Center of Meteorological and Climatic Research Applied to Agriculture (CEPAGRI). We assumed that a multidimensional space generated by information obtained in the harmonics is a appropriate space to study the similarity between time series. Here we used the word features of a series to refer the coefficients extracted by time series in Fourier decomposition. The proposed methodology has shown to be efficient with a high success rate for the classification of the culture of sugarcane in images from Jaboticabal city, in Brazil, 2004/2005.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信