基于高解析小波变换的贝叶斯去噪方法

I. Adam, C. Nafornita, Jean-Marc Boucher, A. Isar
{"title":"基于高解析小波变换的贝叶斯去噪方法","authors":"I. Adam, C. Nafornita, Jean-Marc Boucher, A. Isar","doi":"10.1109/WISP.2007.4447560","DOIUrl":null,"url":null,"abstract":"The property of shift-invariance associated with a good directional selectivity is important for the application of a wavelet transform, (WT), in many fields of image processing. Generally, complex wavelet transforms, like for example the double tree complex wavelet transform, (DTCWT), have these good properties. In this paper we propose the use of a new implementation of such a WT, recently introduced, namely the hyperanalytic wavelet transform, (HWT), in denoising applications. The proposed denoising method is very simple, implying three steps: the computation of the forward WT, the filtering in the wavelets domain and the computation of the inverse WT, (IWT). The goal of this paper is the association of a new implementation of the HWT, recently proposed, with a maximum a posteriori (MAP) filter. Some simulation examples and comparisons prove the performances of the proposed denoising method.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"174 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Bayesian Approach of Hyperanalytic Wavelet Transform Based Denoising\",\"authors\":\"I. Adam, C. Nafornita, Jean-Marc Boucher, A. Isar\",\"doi\":\"10.1109/WISP.2007.4447560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The property of shift-invariance associated with a good directional selectivity is important for the application of a wavelet transform, (WT), in many fields of image processing. Generally, complex wavelet transforms, like for example the double tree complex wavelet transform, (DTCWT), have these good properties. In this paper we propose the use of a new implementation of such a WT, recently introduced, namely the hyperanalytic wavelet transform, (HWT), in denoising applications. The proposed denoising method is very simple, implying three steps: the computation of the forward WT, the filtering in the wavelets domain and the computation of the inverse WT, (IWT). The goal of this paper is the association of a new implementation of the HWT, recently proposed, with a maximum a posteriori (MAP) filter. Some simulation examples and comparisons prove the performances of the proposed denoising method.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"174 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

小波变换的平移不变性和良好的方向选择性对小波变换在许多图像处理领域的应用具有重要意义。一般来说,复小波变换,例如双树复小波变换(DTCWT),具有这些良好的性质。在本文中,我们提出使用这种小波变换的一种新实现,即高解析小波变换(HWT),在去噪应用中。所提出的去噪方法非常简单,只需三步:前向小波变换的计算、小波域滤波和逆小波变换的计算。本文的目标是将最近提出的一种新的HWT实现与最大后验(MAP)滤波器相关联。仿真算例和对比验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Approach of Hyperanalytic Wavelet Transform Based Denoising
The property of shift-invariance associated with a good directional selectivity is important for the application of a wavelet transform, (WT), in many fields of image processing. Generally, complex wavelet transforms, like for example the double tree complex wavelet transform, (DTCWT), have these good properties. In this paper we propose the use of a new implementation of such a WT, recently introduced, namely the hyperanalytic wavelet transform, (HWT), in denoising applications. The proposed denoising method is very simple, implying three steps: the computation of the forward WT, the filtering in the wavelets domain and the computation of the inverse WT, (IWT). The goal of this paper is the association of a new implementation of the HWT, recently proposed, with a maximum a posteriori (MAP) filter. Some simulation examples and comparisons prove the performances of the proposed denoising method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信