X. Cai, Jinbo Liu, Ming Xu, Shu Hu, H. Cai, Jingwei Guo
{"title":"Nd:YAG激光器在1064nm泵浦H2中产生多波长激光","authors":"X. Cai, Jinbo Liu, Ming Xu, Shu Hu, H. Cai, Jingwei Guo","doi":"10.1117/12.2672789","DOIUrl":null,"url":null,"abstract":"We report on the multiple wavelengths Raman laser output, the laser wavelength span from violet to mid-infrared, 359nm~9.2μm have been detected and recorded on spectrum and energy meter. In this investigation, 222mJ Q-switch Nd:YAG 1064nm laser set as pump laser, 737/770nm and 1.1/1.7/1.9/2.1/2.4/9.2μm Raman laser is high gained and takes a measure of the energy. 1.9μm laser maximum 28mJ, 2.1μm laser maximum 30mJ, laser pulse width is 4ns. And 9.2μm mid-infrared laser gets 0.8mJ. The pressurized hydrogen is pumped by a 1064nm laser and 737/770nm anti-Stokes Raman laser are generated. The 737nm laser is generated by stimulated vibrational Raman Scattering (SVRS); while the 770nm laser is generated by the combination processes of SVRS and stimulated rotational Raman scattering (SRRS). The maximum pulse energies of 6.42mJ at 737nm and 4.42mJ at 770nm are achieved by the optimization of anti-Stokes Raman laser. The energy efficiency is 2.6% at 737nm and 1.8% at 770nm.","PeriodicalId":422113,"journal":{"name":"Photonics and Optoelectronics Meetings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple wavelength laser generate in H2 pumped by Nd:YAG laser at 1064 nm\",\"authors\":\"X. Cai, Jinbo Liu, Ming Xu, Shu Hu, H. Cai, Jingwei Guo\",\"doi\":\"10.1117/12.2672789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the multiple wavelengths Raman laser output, the laser wavelength span from violet to mid-infrared, 359nm~9.2μm have been detected and recorded on spectrum and energy meter. In this investigation, 222mJ Q-switch Nd:YAG 1064nm laser set as pump laser, 737/770nm and 1.1/1.7/1.9/2.1/2.4/9.2μm Raman laser is high gained and takes a measure of the energy. 1.9μm laser maximum 28mJ, 2.1μm laser maximum 30mJ, laser pulse width is 4ns. And 9.2μm mid-infrared laser gets 0.8mJ. The pressurized hydrogen is pumped by a 1064nm laser and 737/770nm anti-Stokes Raman laser are generated. The 737nm laser is generated by stimulated vibrational Raman Scattering (SVRS); while the 770nm laser is generated by the combination processes of SVRS and stimulated rotational Raman scattering (SRRS). The maximum pulse energies of 6.42mJ at 737nm and 4.42mJ at 770nm are achieved by the optimization of anti-Stokes Raman laser. The energy efficiency is 2.6% at 737nm and 1.8% at 770nm.\",\"PeriodicalId\":422113,\"journal\":{\"name\":\"Photonics and Optoelectronics Meetings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Optoelectronics Meetings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2672789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Optoelectronics Meetings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple wavelength laser generate in H2 pumped by Nd:YAG laser at 1064 nm
We report on the multiple wavelengths Raman laser output, the laser wavelength span from violet to mid-infrared, 359nm~9.2μm have been detected and recorded on spectrum and energy meter. In this investigation, 222mJ Q-switch Nd:YAG 1064nm laser set as pump laser, 737/770nm and 1.1/1.7/1.9/2.1/2.4/9.2μm Raman laser is high gained and takes a measure of the energy. 1.9μm laser maximum 28mJ, 2.1μm laser maximum 30mJ, laser pulse width is 4ns. And 9.2μm mid-infrared laser gets 0.8mJ. The pressurized hydrogen is pumped by a 1064nm laser and 737/770nm anti-Stokes Raman laser are generated. The 737nm laser is generated by stimulated vibrational Raman Scattering (SVRS); while the 770nm laser is generated by the combination processes of SVRS and stimulated rotational Raman scattering (SRRS). The maximum pulse energies of 6.42mJ at 737nm and 4.42mJ at 770nm are achieved by the optimization of anti-Stokes Raman laser. The energy efficiency is 2.6% at 737nm and 1.8% at 770nm.