利用Hortonworks Sandbox在汽车行业执行大数据分析

Sukhpreet Singh, G. Jagdev
{"title":"利用Hortonworks Sandbox在汽车行业执行大数据分析","authors":"Sukhpreet Singh, G. Jagdev","doi":"10.1109/Indo-TaiwanICAN48429.2020.9181314","DOIUrl":null,"url":null,"abstract":"The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.","PeriodicalId":171125,"journal":{"name":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox\",\"authors\":\"Sukhpreet Singh, G. Jagdev\",\"doi\":\"10.1109/Indo-TaiwanICAN48429.2020.9181314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.\",\"PeriodicalId\":171125,\"journal\":{\"name\":\"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于全球化、不断变化的营销条件、成本压力、竞争加剧和波动性,市场格局发生了巨大变化。由于技术以惊人的速度见证了这种变化,改变商业运作成为可能。汽车工业正处于一场革命的边缘。客户期望的提高、所有权的变化、自动驾驶汽车等导致了汽车、应用和服务从人工智能、传感器、RFID到大数据分析的转变。大型汽车行业一直在强调收集数据,以深入了解客户的期望、偏好和预算以及竞争对手的政策。统计方法可以应用于历史数据,这些数据是从各种真实来源收集的,可用于确定固定和可变营销投资的影响,并支持汽车制造商提出更有效、更精确和更高效的方法来吸引目标客户。对供应链数据进行适当的分析,可以发现供应链中的薄弱环节,及时采取对策,将不利影响降到最低。为了从分析中充分获益,需要一组负责跨业务的多个功能和团队的交叉和集成的详细功能的协作。大数据分析在汽车行业中发挥的有效作用也在研究论文中得到了拓展。研究报告讨论了大数据的范围和挑战。本文还详细阐述了大数据概念背后的工作技术。本文阐述了MapReduce技术的工作原理,该技术在后端执行,负责数据挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox
The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信