基于局部线性嵌入算法的入侵检测新方法

Ying-hui Kong, Haijun Xiao
{"title":"基于局部线性嵌入算法的入侵检测新方法","authors":"Ying-hui Kong, Haijun Xiao","doi":"10.1109/ICWAPR.2009.5207429","DOIUrl":null,"url":null,"abstract":"Intrusion detection is a important network security research direction. SVM(Support Vector Machine) is considered as a good substitute for traditional learning classification approach, and has a good generalization performance especially in small samples in non-linear case. LLE(Local Linear Embedding) is a good nonlinear dimensionality reduction method, which is good for the data that lies on the nonlinear manifold. This paper proposes an approach using SVM and LLE in intrusion detection system. In the Matlab simulation experiment, we can achieve higher classification accuracy rate, lower false positive rare and false negative rate using the method, compared to PCA(Principal Component Analysis) and ICA(Independent Component Analysis) approach.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"3 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for intrusion detection based on Local Linear Embedding algorithm\",\"authors\":\"Ying-hui Kong, Haijun Xiao\",\"doi\":\"10.1109/ICWAPR.2009.5207429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion detection is a important network security research direction. SVM(Support Vector Machine) is considered as a good substitute for traditional learning classification approach, and has a good generalization performance especially in small samples in non-linear case. LLE(Local Linear Embedding) is a good nonlinear dimensionality reduction method, which is good for the data that lies on the nonlinear manifold. This paper proposes an approach using SVM and LLE in intrusion detection system. In the Matlab simulation experiment, we can achieve higher classification accuracy rate, lower false positive rare and false negative rate using the method, compared to PCA(Principal Component Analysis) and ICA(Independent Component Analysis) approach.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"3 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测是网络安全研究的一个重要方向。支持向量机(Support Vector Machine, SVM)被认为是传统学习分类方法的良好替代品,尤其在小样本非线性情况下具有良好的泛化性能。局部线性嵌入(LLE)是一种很好的非线性降维方法,它适用于非线性流形上的数据。本文提出了一种基于支持向量机和LLE的入侵检测方法。在Matlab仿真实验中,与PCA(Principal Component Analysis,主成分分析)和ICA(Independent Component Analysis,独立成分分析)方法相比,使用该方法可以获得更高的分类准确率,更低的假阳性罕见率和假阴性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach for intrusion detection based on Local Linear Embedding algorithm
Intrusion detection is a important network security research direction. SVM(Support Vector Machine) is considered as a good substitute for traditional learning classification approach, and has a good generalization performance especially in small samples in non-linear case. LLE(Local Linear Embedding) is a good nonlinear dimensionality reduction method, which is good for the data that lies on the nonlinear manifold. This paper proposes an approach using SVM and LLE in intrusion detection system. In the Matlab simulation experiment, we can achieve higher classification accuracy rate, lower false positive rare and false negative rate using the method, compared to PCA(Principal Component Analysis) and ICA(Independent Component Analysis) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信