基于小波变换的高光谱影像土地覆盖分类

K. Kavitha, P. Nivedha, S. Arivazhagan, P. Palniladevi
{"title":"基于小波变换的高光谱影像土地覆盖分类","authors":"K. Kavitha, P. Nivedha, S. Arivazhagan, P. Palniladevi","doi":"10.1109/CNT.2014.7062735","DOIUrl":null,"url":null,"abstract":"This paper aims at the wavelet transform based algorithm for landcover classification of Hyperspectral remote sensing images using Support Vector Machines (SVM). In this paper Feature Extraction and Hyperspectral pixel classification are done based on Discrete Wavelet Transform (DWT) features which includes the Statistical Features and the Gray Level Co-occurrence Features. The experiment is performed on a hyperspectral dataset acquired from ROSIS sensor and the experimental results indicate that it provides an Overall accuracy of about 98.28%. When compared to the other methods, the wavelet transform based method increases the overall classification accuracy.","PeriodicalId":347883,"journal":{"name":"2014 International Conference on Communication and Network Technologies","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wavelet transform based land cover classification of hyperspectral images\",\"authors\":\"K. Kavitha, P. Nivedha, S. Arivazhagan, P. Palniladevi\",\"doi\":\"10.1109/CNT.2014.7062735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at the wavelet transform based algorithm for landcover classification of Hyperspectral remote sensing images using Support Vector Machines (SVM). In this paper Feature Extraction and Hyperspectral pixel classification are done based on Discrete Wavelet Transform (DWT) features which includes the Statistical Features and the Gray Level Co-occurrence Features. The experiment is performed on a hyperspectral dataset acquired from ROSIS sensor and the experimental results indicate that it provides an Overall accuracy of about 98.28%. When compared to the other methods, the wavelet transform based method increases the overall classification accuracy.\",\"PeriodicalId\":347883,\"journal\":{\"name\":\"2014 International Conference on Communication and Network Technologies\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Communication and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNT.2014.7062735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNT.2014.7062735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究基于小波变换的支持向量机(SVM)高光谱遥感影像土地覆盖分类算法。本文基于离散小波变换(DWT)特征(包括统计特征和灰度共生特征)进行特征提取和高光谱像元分类。在ROSIS传感器采集的高光谱数据集上进行了实验,实验结果表明,该方法的总体精度约为98.28%。与其他方法相比,基于小波变换的方法总体上提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet transform based land cover classification of hyperspectral images
This paper aims at the wavelet transform based algorithm for landcover classification of Hyperspectral remote sensing images using Support Vector Machines (SVM). In this paper Feature Extraction and Hyperspectral pixel classification are done based on Discrete Wavelet Transform (DWT) features which includes the Statistical Features and the Gray Level Co-occurrence Features. The experiment is performed on a hyperspectral dataset acquired from ROSIS sensor and the experimental results indicate that it provides an Overall accuracy of about 98.28%. When compared to the other methods, the wavelet transform based method increases the overall classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信