基于多实例学习的两个新的图像检索包生成器

Wei Liu, Weidong Xu, Lihua Li, Guoliang Li
{"title":"基于多实例学习的两个新的图像检索包生成器","authors":"Wei Liu, Weidong Xu, Lihua Li, Guoliang Li","doi":"10.1109/ICIEA.2008.4582518","DOIUrl":null,"url":null,"abstract":"Multi-instance learning(MIL) is a new framework for learning from ambiguity, which is feasible for query-by-example(QBE) paradigm in content-based image retrieval(CBIR), since the query image posed by the user is often ambiguous and difficult to be perceived. Image bag generator, which can transform images into image bags, plays an important role in applying MIL for CBIR according to some researchers' works. In this paper, two new image bag generators named JSEG-bag and Attention-bag were proposed, respectively. JSEG-bag is based on the JSEG image segmentation algorithm and the Attention-bag is based on a saliency-based bottom-up visual attention computational model motivated by visual physiological experimental results. Preliminary experiments showed that the proposed image bag generators can achieve comparable results to some existing bag generators but are more efficient in indexing images.","PeriodicalId":309894,"journal":{"name":"2008 3rd IEEE Conference on Industrial Electronics and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two new bag generators with multi-instance learning for image retrieval\",\"authors\":\"Wei Liu, Weidong Xu, Lihua Li, Guoliang Li\",\"doi\":\"10.1109/ICIEA.2008.4582518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-instance learning(MIL) is a new framework for learning from ambiguity, which is feasible for query-by-example(QBE) paradigm in content-based image retrieval(CBIR), since the query image posed by the user is often ambiguous and difficult to be perceived. Image bag generator, which can transform images into image bags, plays an important role in applying MIL for CBIR according to some researchers' works. In this paper, two new image bag generators named JSEG-bag and Attention-bag were proposed, respectively. JSEG-bag is based on the JSEG image segmentation algorithm and the Attention-bag is based on a saliency-based bottom-up visual attention computational model motivated by visual physiological experimental results. Preliminary experiments showed that the proposed image bag generators can achieve comparable results to some existing bag generators but are more efficient in indexing images.\",\"PeriodicalId\":309894,\"journal\":{\"name\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2008.4582518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2008.4582518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多实例学习(MIL)是一种新的从歧义中学习的框架,它适用于基于内容的图像检索(CBIR)中的按例查询(QBE)范式,因为用户提出的查询图像通常是模糊的,难以被感知。一些研究人员的工作表明,图像袋发生器可以将图像转换成图像袋,在将MIL应用于CBIR中起着重要作用。本文提出了两种新的图像包生成器JSEG-bag和Attention-bag。JSEG-bag基于JSEG图像分割算法,attention -bag基于基于显著性的自下而上的视觉注意计算模型,该模型由视觉生理实验结果驱动。初步实验表明,所提出的图像袋生成器可以达到与现有的一些袋生成器相当的效果,但在索引图像时效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two new bag generators with multi-instance learning for image retrieval
Multi-instance learning(MIL) is a new framework for learning from ambiguity, which is feasible for query-by-example(QBE) paradigm in content-based image retrieval(CBIR), since the query image posed by the user is often ambiguous and difficult to be perceived. Image bag generator, which can transform images into image bags, plays an important role in applying MIL for CBIR according to some researchers' works. In this paper, two new image bag generators named JSEG-bag and Attention-bag were proposed, respectively. JSEG-bag is based on the JSEG image segmentation algorithm and the Attention-bag is based on a saliency-based bottom-up visual attention computational model motivated by visual physiological experimental results. Preliminary experiments showed that the proposed image bag generators can achieve comparable results to some existing bag generators but are more efficient in indexing images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信