大功率低压感应电动机的混合优化算法

S. Lachecinski, M. Dems
{"title":"大功率低压感应电动机的混合优化算法","authors":"S. Lachecinski, M. Dems","doi":"10.1109/ICELMACH.2008.4799968","DOIUrl":null,"url":null,"abstract":"This paper presents results of optimization calculation of the big power low voltage induction motor. The results received by new three hybrid algorithms: GA-R, ESmu+lambda-R, PSO-R were compared. These hybrid algorithms were created by connecting three algorithms of global optimization, i.e. genetic algorithm GA, evolutionary strategy ES and particle swarm optimization PSO with a suitable modified Rosenbrock's method.","PeriodicalId":416125,"journal":{"name":"2008 18th International Conference on Electrical Machines","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimization of big power low voltage induction motor using Hybrid Optimization Algorithms\",\"authors\":\"S. Lachecinski, M. Dems\",\"doi\":\"10.1109/ICELMACH.2008.4799968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents results of optimization calculation of the big power low voltage induction motor. The results received by new three hybrid algorithms: GA-R, ESmu+lambda-R, PSO-R were compared. These hybrid algorithms were created by connecting three algorithms of global optimization, i.e. genetic algorithm GA, evolutionary strategy ES and particle swarm optimization PSO with a suitable modified Rosenbrock's method.\",\"PeriodicalId\":416125,\"journal\":{\"name\":\"2008 18th International Conference on Electrical Machines\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 18th International Conference on Electrical Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2008.4799968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 18th International Conference on Electrical Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2008.4799968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了大功率低压感应电动机的优化计算结果。比较了GA-R、ESmu+lambda-R、PSO-R三种新的混合算法得到的结果。这些混合算法是将遗传算法GA、进化策略ES和粒子群优化PSO三种全局优化算法结合适当的改进Rosenbrock方法而形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of big power low voltage induction motor using Hybrid Optimization Algorithms
This paper presents results of optimization calculation of the big power low voltage induction motor. The results received by new three hybrid algorithms: GA-R, ESmu+lambda-R, PSO-R were compared. These hybrid algorithms were created by connecting three algorithms of global optimization, i.e. genetic algorithm GA, evolutionary strategy ES and particle swarm optimization PSO with a suitable modified Rosenbrock's method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信