利用合成孔径声呐图像中的相位信息进行目标分类

David P. Williams
{"title":"利用合成孔径声呐图像中的相位信息进行目标分类","authors":"David P. Williams","doi":"10.1109/OCEANSKOBE.2018.8559255","DOIUrl":null,"url":null,"abstract":"It is demonstrated that the phase information present in complex high-frequency synthetic aperture sonar (SAS) imagery can be exploited for successful object classification. That is, without using the amplitude content of the imagery, man-made targets can be discriminated from naturally occurring clutter. To exploit the information ostensibly hidden in the phase imagery, relatively simple convolutional neural networks (CNNs) are trained, “from scratch,” on a large database of SAS phase images collected at sea. Inference is then performed on real SAS data collected at sea during five other surveys that span multiple geographical locations and a variety of seafloor types and conditions. These experimental results on the test data illustrate that the phase information alone can produce favorable object classification performance. To our knowledge, this work is the first to demonstrate this finding.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exploiting Phase Information in Synthetic Aperture Sonar Images for Target Classification\",\"authors\":\"David P. Williams\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated that the phase information present in complex high-frequency synthetic aperture sonar (SAS) imagery can be exploited for successful object classification. That is, without using the amplitude content of the imagery, man-made targets can be discriminated from naturally occurring clutter. To exploit the information ostensibly hidden in the phase imagery, relatively simple convolutional neural networks (CNNs) are trained, “from scratch,” on a large database of SAS phase images collected at sea. Inference is then performed on real SAS data collected at sea during five other surveys that span multiple geographical locations and a variety of seafloor types and conditions. These experimental results on the test data illustrate that the phase information alone can produce favorable object classification performance. To our knowledge, this work is the first to demonstrate this finding.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究表明,利用复杂高频合成孔径声呐(SAS)图像中的相位信息可以成功地进行目标分类。也就是说,在不使用图像的振幅内容的情况下,可以将人造目标与自然发生的杂波区分开来。为了利用表面上隐藏在相位图像中的信息,相对简单的卷积神经网络(cnn)“从零开始”在海上收集的SAS相位图像的大型数据库上进行训练。然后,对其他五个跨越多个地理位置和各种海底类型和条件的海上调查中收集的真实SAS数据进行推断。这些实验结果表明,单独使用相位信息可以产生良好的目标分类性能。据我们所知,这项研究首次证明了这一发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Phase Information in Synthetic Aperture Sonar Images for Target Classification
It is demonstrated that the phase information present in complex high-frequency synthetic aperture sonar (SAS) imagery can be exploited for successful object classification. That is, without using the amplitude content of the imagery, man-made targets can be discriminated from naturally occurring clutter. To exploit the information ostensibly hidden in the phase imagery, relatively simple convolutional neural networks (CNNs) are trained, “from scratch,” on a large database of SAS phase images collected at sea. Inference is then performed on real SAS data collected at sea during five other surveys that span multiple geographical locations and a variety of seafloor types and conditions. These experimental results on the test data illustrate that the phase information alone can produce favorable object classification performance. To our knowledge, this work is the first to demonstrate this finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信