O. Azzam, Loai Al Nimer, Charith D. Chitraranjan, A. Denton, Ajay Kumar, F. Bassi, M. Iqbal, S. Kianian
{"title":"基因组定位中基于网络的不可靠标记过滤","authors":"O. Azzam, Loai Al Nimer, Charith D. Chitraranjan, A. Denton, Ajay Kumar, F. Bassi, M. Iqbal, S. Kianian","doi":"10.1109/ICMLA.2011.103","DOIUrl":null,"url":null,"abstract":"Genome mapping, or the experimental determination of the ordering of DNA markers on a chromosome, is an important step in genome sequencing and ultimate assembly of sequenced genomes. The presented research addresses the problem of identifying markers that cannot be placed reliably. If such markers are included in standard mapping procedures they can result in an overall poor mapping. Traditional techniques for identifying markers that cannot be placed consistently are based on resampling, which requires an already computationally expensive process to be done for a large ensemble of resampled populations. We propose a network-based approach that uses pair wise similarities between markers and demonstrate that the results from this approach largely match the more computationally expensive conventional approaches. The evaluation of the proposed approach is done on data from the radiation hybrid mapping of the wheat genome.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Network-Based Filtering of Unreliable Markers in Genome Mapping\",\"authors\":\"O. Azzam, Loai Al Nimer, Charith D. Chitraranjan, A. Denton, Ajay Kumar, F. Bassi, M. Iqbal, S. Kianian\",\"doi\":\"10.1109/ICMLA.2011.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome mapping, or the experimental determination of the ordering of DNA markers on a chromosome, is an important step in genome sequencing and ultimate assembly of sequenced genomes. The presented research addresses the problem of identifying markers that cannot be placed reliably. If such markers are included in standard mapping procedures they can result in an overall poor mapping. Traditional techniques for identifying markers that cannot be placed consistently are based on resampling, which requires an already computationally expensive process to be done for a large ensemble of resampled populations. We propose a network-based approach that uses pair wise similarities between markers and demonstrate that the results from this approach largely match the more computationally expensive conventional approaches. The evaluation of the proposed approach is done on data from the radiation hybrid mapping of the wheat genome.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network-Based Filtering of Unreliable Markers in Genome Mapping
Genome mapping, or the experimental determination of the ordering of DNA markers on a chromosome, is an important step in genome sequencing and ultimate assembly of sequenced genomes. The presented research addresses the problem of identifying markers that cannot be placed reliably. If such markers are included in standard mapping procedures they can result in an overall poor mapping. Traditional techniques for identifying markers that cannot be placed consistently are based on resampling, which requires an already computationally expensive process to be done for a large ensemble of resampled populations. We propose a network-based approach that uses pair wise similarities between markers and demonstrate that the results from this approach largely match the more computationally expensive conventional approaches. The evaluation of the proposed approach is done on data from the radiation hybrid mapping of the wheat genome.