线性混合模型中变量选择的经验贝叶斯信息准则

T. Kubokawa, M. Srivastava
{"title":"线性混合模型中变量选择的经验贝叶斯信息准则","authors":"T. Kubokawa, M. Srivastava","doi":"10.14490/JJSS.40.111","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS\",\"authors\":\"T. Kubokawa, M. Srivastava\",\"doi\":\"10.14490/JJSS.40.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.40.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.40.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了线性混合模型中变量的选择问题。我们提出了使用感兴趣参数的部分先验信息的经验贝叶斯信息准则(EBIC)。具体来说,EBIC结合了一个非主观先验分布的回归系数与一个未知的超参数,但它不受先验信息的设置,如方差成分的干扰参数。结果表明,EBIC方法不仅在变量选择上具有良好的渐近一致性,而且在选择真变量方面也比传统的AIC方法、条件AIC方法和BIC方法具有更好的小样本和大样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS
The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信