利用Davis-Kahan定理学习双随机亲和矩阵

Jiwoong Park, Taejeong Kim
{"title":"利用Davis-Kahan定理学习双随机亲和矩阵","authors":"Jiwoong Park, Taejeong Kim","doi":"10.1109/ICDM.2017.47","DOIUrl":null,"url":null,"abstract":"Building an ideal graph which reveals the exact intrinsic structure of the data is critical in graph-based clustering. There have been a lot of efforts to construct an affinity matrix satisfying such a need in terms of a similarity measure. A recent approach attracting attention is on using doubly stochastic normalization of the affinity matrix to improve the clustering performance. In this paper, we propose a novel method to build a high-quality affinity matrix via incorporating Davis-Kahan theorem of matrix perturbation theory in the doubly stochastic normalization problem. We interpret the goal of the doubly stochastic normalization problem as minimizing the relative distance between the eigenspaces of the corresponding matrices. Also, for the doubly stochastic normalization problem we include an additional constraint that each eigenvalue be on the unit interval to fully conform to the spectral graph theory. Experiments on our framework present superior performance over various datasets.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning Doubly Stochastic Affinity Matrix via Davis-Kahan Theorem\",\"authors\":\"Jiwoong Park, Taejeong Kim\",\"doi\":\"10.1109/ICDM.2017.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building an ideal graph which reveals the exact intrinsic structure of the data is critical in graph-based clustering. There have been a lot of efforts to construct an affinity matrix satisfying such a need in terms of a similarity measure. A recent approach attracting attention is on using doubly stochastic normalization of the affinity matrix to improve the clustering performance. In this paper, we propose a novel method to build a high-quality affinity matrix via incorporating Davis-Kahan theorem of matrix perturbation theory in the doubly stochastic normalization problem. We interpret the goal of the doubly stochastic normalization problem as minimizing the relative distance between the eigenspaces of the corresponding matrices. Also, for the doubly stochastic normalization problem we include an additional constraint that each eigenvalue be on the unit interval to fully conform to the spectral graph theory. Experiments on our framework present superior performance over various datasets.\",\"PeriodicalId\":254086,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2017.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在基于图的聚类中,构建一个能准确揭示数据内在结构的理想图是至关重要的。在相似性度量方面,已经有很多努力来构建一个满足这种需求的亲和矩阵。近年来,利用关联矩阵的双重随机归一化来提高聚类性能的方法引起了人们的关注。本文将矩阵摄动理论中的Davis-Kahan定理应用于双随机归一化问题,提出了一种构造高质量亲和矩阵的新方法。我们将双随机归一化问题的目标解释为最小化相应矩阵的特征空间之间的相对距离。此外,对于双随机归一化问题,我们还附加了一个约束,即每个特征值都在单位区间上,以完全符合谱图理论。在我们的框架上进行的实验在各种数据集上显示出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Doubly Stochastic Affinity Matrix via Davis-Kahan Theorem
Building an ideal graph which reveals the exact intrinsic structure of the data is critical in graph-based clustering. There have been a lot of efforts to construct an affinity matrix satisfying such a need in terms of a similarity measure. A recent approach attracting attention is on using doubly stochastic normalization of the affinity matrix to improve the clustering performance. In this paper, we propose a novel method to build a high-quality affinity matrix via incorporating Davis-Kahan theorem of matrix perturbation theory in the doubly stochastic normalization problem. We interpret the goal of the doubly stochastic normalization problem as minimizing the relative distance between the eigenspaces of the corresponding matrices. Also, for the doubly stochastic normalization problem we include an additional constraint that each eigenvalue be on the unit interval to fully conform to the spectral graph theory. Experiments on our framework present superior performance over various datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信