{"title":"一类抽象演化变分不等式的最优控制及其在均匀塑性中的应用","authors":"H. Meinlschmidt, C. Meyer, S. Walther","doi":"10.46298/jnsao-2020-5800","DOIUrl":null,"url":null,"abstract":"The paper is concerned with an optimal control problem governed by a state equation in form of a generalized abstract operator differential equation involving a maximal monotone operator. The state equation is uniquely solvable, but the associated solution operator is in general not G\\^ateaux-differentiable. In order to derive optimality conditions, we therefore regularize the state equation and its solution operator, respectively, by means of a (smoothed) Yosida approximation. We show convergence of global minimizers for regularization parameter tending to zero and derive necessary and sufficient optimality conditions for the regularized problems. The paper ends with an application of the abstract theory to optimal control of homogenized quasi-static elastoplasticity.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal Control of an abstract Evolution Variational Inequality with Application in Homogenized Plasticity\",\"authors\":\"H. Meinlschmidt, C. Meyer, S. Walther\",\"doi\":\"10.46298/jnsao-2020-5800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with an optimal control problem governed by a state equation in form of a generalized abstract operator differential equation involving a maximal monotone operator. The state equation is uniquely solvable, but the associated solution operator is in general not G\\\\^ateaux-differentiable. In order to derive optimality conditions, we therefore regularize the state equation and its solution operator, respectively, by means of a (smoothed) Yosida approximation. We show convergence of global minimizers for regularization parameter tending to zero and derive necessary and sufficient optimality conditions for the regularized problems. The paper ends with an application of the abstract theory to optimal control of homogenized quasi-static elastoplasticity.\",\"PeriodicalId\":250939,\"journal\":{\"name\":\"Journal of Nonsmooth Analysis and Optimization\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonsmooth Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jnsao-2020-5800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2020-5800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Control of an abstract Evolution Variational Inequality with Application in Homogenized Plasticity
The paper is concerned with an optimal control problem governed by a state equation in form of a generalized abstract operator differential equation involving a maximal monotone operator. The state equation is uniquely solvable, but the associated solution operator is in general not G\^ateaux-differentiable. In order to derive optimality conditions, we therefore regularize the state equation and its solution operator, respectively, by means of a (smoothed) Yosida approximation. We show convergence of global minimizers for regularization parameter tending to zero and derive necessary and sufficient optimality conditions for the regularized problems. The paper ends with an application of the abstract theory to optimal control of homogenized quasi-static elastoplasticity.