颗粒复合材料界面脱黏的演化

G. Dvorak, Jian Zhang
{"title":"颗粒复合材料界面脱黏的演化","authors":"G. Dvorak, Jian Zhang","doi":"10.1115/imece2001/amd-25418","DOIUrl":null,"url":null,"abstract":"\n Evolution of distributed damage in heterogeneous solids is modeled using the Transformation Field Analysis method [Proc. R. Soc. Lond. A (1992) 437, 311–327] and selected models of interface debonding in fibrous or particulate composites, as described in detail in the forthcoming paper [J. Mech. Phys. Solids Boehler Memorial Volume, 2001]. In this approach, stress changes caused by local debonding under increasing overall loads are represented by residual stresses generated by damage-equivalent eigenstrains that act together with the applied mechanical loading program and physically based local transformation strains on an undamaged elastic aggregate. Damage rates are derived from a prescribed probability distribution of interface strength and local energy released by debonding. Numerical simulations of damage evolution in a glass/elastomer composite indicate which of these two conditions controls the process at different reinforcement densities and overall stress states. In general, the energy released by a single particle at given overall stress decreases with increasing reinforcement density, and in proportion to particle size. Therefore, dense reinforcement by smaller-diameter particles or fibers should enhance damage resistance of composite systems.","PeriodicalId":445232,"journal":{"name":"Three-Dimensional Effects in Composite and Sandwich Structures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Interfacial Decohesion in Particulate Composites\",\"authors\":\"G. Dvorak, Jian Zhang\",\"doi\":\"10.1115/imece2001/amd-25418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Evolution of distributed damage in heterogeneous solids is modeled using the Transformation Field Analysis method [Proc. R. Soc. Lond. A (1992) 437, 311–327] and selected models of interface debonding in fibrous or particulate composites, as described in detail in the forthcoming paper [J. Mech. Phys. Solids Boehler Memorial Volume, 2001]. In this approach, stress changes caused by local debonding under increasing overall loads are represented by residual stresses generated by damage-equivalent eigenstrains that act together with the applied mechanical loading program and physically based local transformation strains on an undamaged elastic aggregate. Damage rates are derived from a prescribed probability distribution of interface strength and local energy released by debonding. Numerical simulations of damage evolution in a glass/elastomer composite indicate which of these two conditions controls the process at different reinforcement densities and overall stress states. In general, the energy released by a single particle at given overall stress decreases with increasing reinforcement density, and in proportion to particle size. Therefore, dense reinforcement by smaller-diameter particles or fibers should enhance damage resistance of composite systems.\",\"PeriodicalId\":445232,\"journal\":{\"name\":\"Three-Dimensional Effects in Composite and Sandwich Structures\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Three-Dimensional Effects in Composite and Sandwich Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/amd-25418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Effects in Composite and Sandwich Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/amd-25418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于转换场分析方法的非均质固体中分布损伤演化模型[j]。Lond。[J] .中国机械工程学报(自然科学版),2004,(2):1 - 7。动力机械。理论物理。固体Boehler纪念卷,2001]。在这种方法中,在整体载荷增加的情况下,由局部脱粘引起的应力变化由损伤等效特征应变产生的残余应力表示,该残余应力与应用的机械加载程序和基于物理的未损伤弹性骨料的局部转换应变共同作用。损伤率由界面强度和局部脱粘释放能量的规定概率分布得出。对玻璃/弹性体复合材料损伤演化的数值模拟表明,在不同的增强密度和总应力状态下,这两种条件中哪一种控制了损伤演化过程。一般来说,在给定的总应力下,单个颗粒释放的能量随着增强密度的增加而减少,并与颗粒尺寸成比例。因此,采用直径较小的颗粒或纤维进行密集增强,可以增强复合材料体系的抗损伤能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Interfacial Decohesion in Particulate Composites
Evolution of distributed damage in heterogeneous solids is modeled using the Transformation Field Analysis method [Proc. R. Soc. Lond. A (1992) 437, 311–327] and selected models of interface debonding in fibrous or particulate composites, as described in detail in the forthcoming paper [J. Mech. Phys. Solids Boehler Memorial Volume, 2001]. In this approach, stress changes caused by local debonding under increasing overall loads are represented by residual stresses generated by damage-equivalent eigenstrains that act together with the applied mechanical loading program and physically based local transformation strains on an undamaged elastic aggregate. Damage rates are derived from a prescribed probability distribution of interface strength and local energy released by debonding. Numerical simulations of damage evolution in a glass/elastomer composite indicate which of these two conditions controls the process at different reinforcement densities and overall stress states. In general, the energy released by a single particle at given overall stress decreases with increasing reinforcement density, and in proportion to particle size. Therefore, dense reinforcement by smaller-diameter particles or fibers should enhance damage resistance of composite systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信