霜冻品种的存在

C. Haesemeyer, C. Weibel
{"title":"霜冻品种的存在","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.16","DOIUrl":null,"url":null,"abstract":"This chapter proves that the norm varieties constructed in the previous chapter are indeed Rost varieties. In other words, it proves that Rost varieties exist. In doing so, the chapter also proves the Norm Principle, which is a theorem that supposes that 𝑘 is an 𝓁-special field of characteristic 0, and that 𝑋 is a norm variety for some nontrivial symbol ª. Then each element of ̅𝐻−1, −1(𝑋) is a Kummer element. In preparation for the proof of the Norm Principle, this chapter develops some basic facts about elements of ̅𝐻−1, −1(𝑋) supported on points 𝑥 with 𝑘(𝑥) : 𝑘=𝓁.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Rost Varieties\",\"authors\":\"C. Haesemeyer, C. Weibel\",\"doi\":\"10.2307/j.ctv941tx2.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter proves that the norm varieties constructed in the previous chapter are indeed Rost varieties. In other words, it proves that Rost varieties exist. In doing so, the chapter also proves the Norm Principle, which is a theorem that supposes that 𝑘 is an 𝓁-special field of characteristic 0, and that 𝑋 is a norm variety for some nontrivial symbol ª. Then each element of ̅𝐻−1, −1(𝑋) is a Kummer element. In preparation for the proof of the Norm Principle, this chapter develops some basic facts about elements of ̅𝐻−1, −1(𝑋) supported on points 𝑥 with 𝑘(𝑥) : 𝑘=𝓁.\",\"PeriodicalId\":145287,\"journal\":{\"name\":\"The Norm Residue Theorem in Motivic Cohomology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Norm Residue Theorem in Motivic Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv941tx2.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章证明了前一章构建的范数品种确实是罗斯特品种。换句话说,它证明了Rost品种的存在。在这样做的过程中,本章也证明了范数原理,这是一个假设𝑘是特征为0的𝓁-special域,并且𝑋是一些非平凡符号ª的范数变化的定理。那么,每个元素(𝐻−1,−1(𝑋))都是一个Kummer元素。为了准备范数原理的证明,本章发展了一些基本事实,这些基本事实是关于在点上以𝑘(s1):𝑘=𝓁支持的ω𝐻−1,ω 1(𝑋)的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Rost Varieties
This chapter proves that the norm varieties constructed in the previous chapter are indeed Rost varieties. In other words, it proves that Rost varieties exist. In doing so, the chapter also proves the Norm Principle, which is a theorem that supposes that 𝑘 is an 𝓁-special field of characteristic 0, and that 𝑋 is a norm variety for some nontrivial symbol ª. Then each element of ̅𝐻−1, −1(𝑋) is a Kummer element. In preparation for the proof of the Norm Principle, this chapter develops some basic facts about elements of ̅𝐻−1, −1(𝑋) supported on points 𝑥 with 𝑘(𝑥) : 𝑘=𝓁.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信