{"title":"淀粉的化学性质及其在食品工业中的应用","authors":"H. Egharevba","doi":"10.5772/INTECHOPEN.87777","DOIUrl":null,"url":null,"abstract":"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.","PeriodicalId":118067,"journal":{"name":"Chemical Properties of Starch","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Chemical Properties of Starch and Its Application in the Food Industry\",\"authors\":\"H. Egharevba\",\"doi\":\"10.5772/INTECHOPEN.87777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.\",\"PeriodicalId\":118067,\"journal\":{\"name\":\"Chemical Properties of Starch\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Properties of Starch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.87777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Properties of Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.87777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical Properties of Starch and Its Application in the Food Industry
Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.