Twitter上基于位置、职业和语义的社会经济地位推断

Jacob Levy Abitbol, M. Karsai, E. Fleury
{"title":"Twitter上基于位置、职业和语义的社会经济地位推断","authors":"Jacob Levy Abitbol, M. Karsai, E. Fleury","doi":"10.1109/ICDMW.2018.00171","DOIUrl":null,"url":null,"abstract":"The socioeconomic status of people depends on a combination of individual characteristics and environmental variables, thus its inference from online behavioral data is a difficult task. Attributes like user semantics in communication, habitat, occupation, or social network are all known to be determinant predictors of this feature. In this paper we propose three different data collection and combination methods to first estimate and, in turn, infer the socioeconomic status of French Twitter users from their online semantics. Our methods are based on open census data, crawled professional profiles, and remotely sensed, expert annotated information on living environment. Our inference models reach similar performance of earlier results with the advantage of relying on broadly available datasets and of providing a generalizable framework to estimate socioeconomic status of large numbers of Twitter users. These results may contribute to the scientific discussion on social stratification and inequalities, and may fuel several applications.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Location, Occupation, and Semantics Based Socioeconomic Status Inference on Twitter\",\"authors\":\"Jacob Levy Abitbol, M. Karsai, E. Fleury\",\"doi\":\"10.1109/ICDMW.2018.00171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The socioeconomic status of people depends on a combination of individual characteristics and environmental variables, thus its inference from online behavioral data is a difficult task. Attributes like user semantics in communication, habitat, occupation, or social network are all known to be determinant predictors of this feature. In this paper we propose three different data collection and combination methods to first estimate and, in turn, infer the socioeconomic status of French Twitter users from their online semantics. Our methods are based on open census data, crawled professional profiles, and remotely sensed, expert annotated information on living environment. Our inference models reach similar performance of earlier results with the advantage of relying on broadly available datasets and of providing a generalizable framework to estimate socioeconomic status of large numbers of Twitter users. These results may contribute to the scientific discussion on social stratification and inequalities, and may fuel several applications.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

人们的社会经济地位取决于个人特征和环境变量的组合,因此从在线行为数据中推断其社会经济地位是一项艰巨的任务。通信中的用户语义、居住地、职业或社交网络等属性都是该特征的决定性预测因素。在本文中,我们提出了三种不同的数据收集和组合方法来首先估计,进而推断法国Twitter用户的社会经济地位,从他们的在线语义。我们的方法是基于公开的人口普查数据、抓取的专业简介和遥感、专家注释的生活环境信息。我们的推理模型达到了与早期结果相似的性能,其优势在于依赖于广泛可用的数据集,并提供了一个可推广的框架来估计大量Twitter用户的社会经济地位。这些结果可能有助于对社会分层和不平等的科学讨论,并可能推动一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location, Occupation, and Semantics Based Socioeconomic Status Inference on Twitter
The socioeconomic status of people depends on a combination of individual characteristics and environmental variables, thus its inference from online behavioral data is a difficult task. Attributes like user semantics in communication, habitat, occupation, or social network are all known to be determinant predictors of this feature. In this paper we propose three different data collection and combination methods to first estimate and, in turn, infer the socioeconomic status of French Twitter users from their online semantics. Our methods are based on open census data, crawled professional profiles, and remotely sensed, expert annotated information on living environment. Our inference models reach similar performance of earlier results with the advantage of relying on broadly available datasets and of providing a generalizable framework to estimate socioeconomic status of large numbers of Twitter users. These results may contribute to the scientific discussion on social stratification and inequalities, and may fuel several applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信