基于wifi的室内定位算法评价

Ahed Aboodi, T. Wan
{"title":"基于wifi的室内定位算法评价","authors":"Ahed Aboodi, T. Wan","doi":"10.1109/MUSIC.2012.52","DOIUrl":null,"url":null,"abstract":"This paper proposes an indoor positioning algorithm, WBI based on WiFi Received Signal Strength (RSS) technology in conjunction with trilateration techniques. The WBI algorithm estimates the location using RSS values previously collected from within the area of interest, determine whether it falls within the Min-Max bounding box, corrects for non-line-of-sight propagation effects on positioning errors using Kalman filtering, and finally update the location estimation using Least Square Estimation (LSE). The paper analyzes the complexity of the proposed algorithm and compares its performance against existing algorithms. Furthermore, the proposed WBI algorithm was able to achieve an average accuracy of 2.6 m.","PeriodicalId":260515,"journal":{"name":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Evaluation of WiFi-Based Indoor (WBI) Positioning Algorithm\",\"authors\":\"Ahed Aboodi, T. Wan\",\"doi\":\"10.1109/MUSIC.2012.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an indoor positioning algorithm, WBI based on WiFi Received Signal Strength (RSS) technology in conjunction with trilateration techniques. The WBI algorithm estimates the location using RSS values previously collected from within the area of interest, determine whether it falls within the Min-Max bounding box, corrects for non-line-of-sight propagation effects on positioning errors using Kalman filtering, and finally update the location estimation using Least Square Estimation (LSE). The paper analyzes the complexity of the proposed algorithm and compares its performance against existing algorithms. Furthermore, the proposed WBI algorithm was able to achieve an average accuracy of 2.6 m.\",\"PeriodicalId\":260515,\"journal\":{\"name\":\"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MUSIC.2012.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MUSIC.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种基于WiFi接收信号强度(RSS)技术与三边定位技术相结合的室内定位算法WBI。WBI算法使用先前从感兴趣区域内收集的RSS值来估计位置,确定它是否落在最小-最大边界框内,使用卡尔曼滤波校正非视距传播对定位误差的影响,最后使用最小二乘估计(LSE)更新位置估计。分析了该算法的复杂性,并与现有算法进行了性能比较。此外,所提出的WBI算法能够达到2.6 m的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of WiFi-Based Indoor (WBI) Positioning Algorithm
This paper proposes an indoor positioning algorithm, WBI based on WiFi Received Signal Strength (RSS) technology in conjunction with trilateration techniques. The WBI algorithm estimates the location using RSS values previously collected from within the area of interest, determine whether it falls within the Min-Max bounding box, corrects for non-line-of-sight propagation effects on positioning errors using Kalman filtering, and finally update the location estimation using Least Square Estimation (LSE). The paper analyzes the complexity of the proposed algorithm and compares its performance against existing algorithms. Furthermore, the proposed WBI algorithm was able to achieve an average accuracy of 2.6 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信