基于感知失真和信息丢失的图像重定位的客观质量评估

Chih-Chung Hsu, Chia-Wen Lin, Yuming Fang, Weisi Lin
{"title":"基于感知失真和信息丢失的图像重定位的客观质量评估","authors":"Chih-Chung Hsu, Chia-Wen Lin, Yuming Fang, Weisi Lin","doi":"10.1109/VCIP.2013.6706443","DOIUrl":null,"url":null,"abstract":"Image retargeting techniques aim to obtain retargeted images with different sizes or aspect ratios for various display screens. Various content-aware image retargeting algorithms have been proposed recently. However, there is still no accurate objective metric for visual quality assessment of retargeted images. In this paper, we propose a novel objective metric for assessing visual quality of retargeted images based on perceptual geometric distortion and information loss. The proposed metric measures the geometric distortion of retargeted images by SIFT flow variation. Furthermore, a visual saliency map is derived to characterize human perception of the geometric distortion. On the other hand, the information loss in a retargeted image, which is calculated based on the saliency map, is integrated into the proposed metric. A user study is conducted to evaluate the performance of the proposed metric. Experimental results show the consistency between the objective assessments from the proposed metric and subjective assessments.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Objective quality assessment for image retargeting based on perceptual distortion and information loss\",\"authors\":\"Chih-Chung Hsu, Chia-Wen Lin, Yuming Fang, Weisi Lin\",\"doi\":\"10.1109/VCIP.2013.6706443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retargeting techniques aim to obtain retargeted images with different sizes or aspect ratios for various display screens. Various content-aware image retargeting algorithms have been proposed recently. However, there is still no accurate objective metric for visual quality assessment of retargeted images. In this paper, we propose a novel objective metric for assessing visual quality of retargeted images based on perceptual geometric distortion and information loss. The proposed metric measures the geometric distortion of retargeted images by SIFT flow variation. Furthermore, a visual saliency map is derived to characterize human perception of the geometric distortion. On the other hand, the information loss in a retargeted image, which is calculated based on the saliency map, is integrated into the proposed metric. A user study is conducted to evaluate the performance of the proposed metric. Experimental results show the consistency between the objective assessments from the proposed metric and subjective assessments.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

图像重定向技术的目的是获得不同尺寸或宽高比的不同显示屏幕的重定向图像。最近提出了各种内容感知图像重定向算法。然而,对于重定位图像的视觉质量评估,目前还没有准确客观的度量标准。在本文中,我们提出了一种新的基于感知几何失真和信息损失的客观度量来评估重定位图像的视觉质量。该度量方法通过SIFT流量变化来度量重定位图像的几何畸变。在此基础上,推导了一种视觉显著性图来表征人类对几何畸变的感知。另一方面,将基于显著性映射计算的重目标图像的信息损失集成到所提出的度量中。进行用户研究以评估所提议度量的性能。实验结果表明,所提度量的客观评价与主观评价是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective quality assessment for image retargeting based on perceptual distortion and information loss
Image retargeting techniques aim to obtain retargeted images with different sizes or aspect ratios for various display screens. Various content-aware image retargeting algorithms have been proposed recently. However, there is still no accurate objective metric for visual quality assessment of retargeted images. In this paper, we propose a novel objective metric for assessing visual quality of retargeted images based on perceptual geometric distortion and information loss. The proposed metric measures the geometric distortion of retargeted images by SIFT flow variation. Furthermore, a visual saliency map is derived to characterize human perception of the geometric distortion. On the other hand, the information loss in a retargeted image, which is calculated based on the saliency map, is integrated into the proposed metric. A user study is conducted to evaluate the performance of the proposed metric. Experimental results show the consistency between the objective assessments from the proposed metric and subjective assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信