离线泊松分布数据集的最后一种显著趋势变化检测方法

A. Shahraki, H. Taherzadeh, Øystein Haugen
{"title":"离线泊松分布数据集的最后一种显著趋势变化检测方法","authors":"A. Shahraki, H. Taherzadeh, Øystein Haugen","doi":"10.1109/ISNCC.2017.8071994","DOIUrl":null,"url":null,"abstract":"Trend change detection methods find trends in a dataset. Datasets based on Poisson distribution are important to analyze since they mimic many different applications such as computer networks. Our use-cases are simulations of computer networks. The last significant trend is the last predominant trend in a time-series dataset. Our method is a matrix based trend change detection that can analyze datasets with variable sizes. Reducing the time complexity and increasing the accuracy when determining the last significant trend are the goals of our method. We compare our method with RuLSIF, a basic change point detection method, to illustrate the benefits of our approach.","PeriodicalId":176998,"journal":{"name":"2017 International Symposium on Networks, Computers and Communications (ISNCC)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Last significant trend change detection method for offline poisson distribution datasets\",\"authors\":\"A. Shahraki, H. Taherzadeh, Øystein Haugen\",\"doi\":\"10.1109/ISNCC.2017.8071994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trend change detection methods find trends in a dataset. Datasets based on Poisson distribution are important to analyze since they mimic many different applications such as computer networks. Our use-cases are simulations of computer networks. The last significant trend is the last predominant trend in a time-series dataset. Our method is a matrix based trend change detection that can analyze datasets with variable sizes. Reducing the time complexity and increasing the accuracy when determining the last significant trend are the goals of our method. We compare our method with RuLSIF, a basic change point detection method, to illustrate the benefits of our approach.\",\"PeriodicalId\":176998,\"journal\":{\"name\":\"2017 International Symposium on Networks, Computers and Communications (ISNCC)\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Networks, Computers and Communications (ISNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNCC.2017.8071994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Networks, Computers and Communications (ISNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNCC.2017.8071994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

趋势变化检测方法在数据集中发现趋势。基于泊松分布的数据集对分析很重要,因为它们模拟了许多不同的应用,如计算机网络。我们的用例是计算机网络的模拟。最后一个显著趋势是时间序列数据集中的最后一个主导趋势。我们的方法是基于矩阵的趋势变化检测,可以分析可变大小的数据集。在确定最后一个显著趋势时,降低时间复杂度和提高准确性是我们方法的目标。我们将我们的方法与RuLSIF(一种基本的变化点检测方法)进行比较,以说明我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Last significant trend change detection method for offline poisson distribution datasets
Trend change detection methods find trends in a dataset. Datasets based on Poisson distribution are important to analyze since they mimic many different applications such as computer networks. Our use-cases are simulations of computer networks. The last significant trend is the last predominant trend in a time-series dataset. Our method is a matrix based trend change detection that can analyze datasets with variable sizes. Reducing the time complexity and increasing the accuracy when determining the last significant trend are the goals of our method. We compare our method with RuLSIF, a basic change point detection method, to illustrate the benefits of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信