人工智能、脑电图和重症监护病房的临床结果

M. Desai
{"title":"人工智能、脑电图和重症监护病房的临床结果","authors":"M. Desai","doi":"10.1109/spmb55497.2022.10014955","DOIUrl":null,"url":null,"abstract":"In this talk, we will discuss the use of electroencephalograms (EEG) in Intensive Care Units (ICU). We will review the use of EEGs as a multi-dimensional biomarker. We will review applications of artificial intelligence (AI) and machine learning (ML) for each type of biomarker. We will review cases highlighting biomarker usage in clinical management. Continuous EEG (CEEG) is an invaluable tool in the ICU since it yields multi-multi-dimensional biomarkers. AI can overcome or ameliorate limitations of CEEG applications in the ICU. Real-time analysis and interpretation of CEEG data is essential to influence clinical decision-making and clinical outcomes. ML models and AI integration into the decision-making process provides standardization and automation. Opportunities exist for the integration of real-time annotation and AI-based decision-support to achieve better patient outcomes.","PeriodicalId":261445,"journal":{"name":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence, EEG and Clinical Outcomes in Intensive Care Units\",\"authors\":\"M. Desai\",\"doi\":\"10.1109/spmb55497.2022.10014955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we will discuss the use of electroencephalograms (EEG) in Intensive Care Units (ICU). We will review the use of EEGs as a multi-dimensional biomarker. We will review applications of artificial intelligence (AI) and machine learning (ML) for each type of biomarker. We will review cases highlighting biomarker usage in clinical management. Continuous EEG (CEEG) is an invaluable tool in the ICU since it yields multi-multi-dimensional biomarkers. AI can overcome or ameliorate limitations of CEEG applications in the ICU. Real-time analysis and interpretation of CEEG data is essential to influence clinical decision-making and clinical outcomes. ML models and AI integration into the decision-making process provides standardization and automation. Opportunities exist for the integration of real-time annotation and AI-based decision-support to achieve better patient outcomes.\",\"PeriodicalId\":261445,\"journal\":{\"name\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spmb55497.2022.10014955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spmb55497.2022.10014955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这次演讲中,我们将讨论脑电图(EEG)在重症监护病房(ICU)中的应用。我们将回顾脑电图作为一种多维生物标志物的应用。我们将回顾人工智能(AI)和机器学习(ML)在每种生物标志物上的应用。我们将回顾在临床管理中突出生物标志物使用的案例。连续脑电图(CEEG)是ICU中一种非常宝贵的工具,因为它可以产生多维生物标志物。人工智能可以克服或改善脑电图在ICU应用的局限性。脑电图数据的实时分析和解释对影响临床决策和临床结果至关重要。ML模型和AI集成到决策过程中提供了标准化和自动化。整合实时注释和基于人工智能的决策支持以实现更好的患者治疗效果是有机会的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence, EEG and Clinical Outcomes in Intensive Care Units
In this talk, we will discuss the use of electroencephalograms (EEG) in Intensive Care Units (ICU). We will review the use of EEGs as a multi-dimensional biomarker. We will review applications of artificial intelligence (AI) and machine learning (ML) for each type of biomarker. We will review cases highlighting biomarker usage in clinical management. Continuous EEG (CEEG) is an invaluable tool in the ICU since it yields multi-multi-dimensional biomarkers. AI can overcome or ameliorate limitations of CEEG applications in the ICU. Real-time analysis and interpretation of CEEG data is essential to influence clinical decision-making and clinical outcomes. ML models and AI integration into the decision-making process provides standardization and automation. Opportunities exist for the integration of real-time annotation and AI-based decision-support to achieve better patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信