手势识别与深度数据

Fabio Dominio, Mauro Donadeo, Giulio Marin, P. Zanuttigh, G. Cortelazzo
{"title":"手势识别与深度数据","authors":"Fabio Dominio, Mauro Donadeo, Giulio Marin, P. Zanuttigh, G. Cortelazzo","doi":"10.1145/2510650.2510651","DOIUrl":null,"url":null,"abstract":"Depth data acquired by current low-cost real-time depth cameras provide a very informative description of the hand pose, that can be effectively exploited for gesture recognition purposes. This paper introduces a novel hand gesture recognition scheme based on depth data. The hand is firstly extracted from the acquired depth maps with the aid also of color information from the associated views. Then the hand is segmented into palm and finger regions. Next, two different set of feature descriptors are extracted, one based on the distances of the fingertips from the hand center and the other on the curvature of the hand contour. Finally, a multi-class SVM classifier is employed to recognize the performed gestures. The proposed scheme runs in real-time and is able to achieve a very high accuracy on depth data acquired with the Kinect.","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Hand gesture recognition with depth data\",\"authors\":\"Fabio Dominio, Mauro Donadeo, Giulio Marin, P. Zanuttigh, G. Cortelazzo\",\"doi\":\"10.1145/2510650.2510651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth data acquired by current low-cost real-time depth cameras provide a very informative description of the hand pose, that can be effectively exploited for gesture recognition purposes. This paper introduces a novel hand gesture recognition scheme based on depth data. The hand is firstly extracted from the acquired depth maps with the aid also of color information from the associated views. Then the hand is segmented into palm and finger regions. Next, two different set of feature descriptors are extracted, one based on the distances of the fingertips from the hand center and the other on the curvature of the hand contour. Finally, a multi-class SVM classifier is employed to recognize the performed gestures. The proposed scheme runs in real-time and is able to achieve a very high accuracy on depth data acquired with the Kinect.\",\"PeriodicalId\":360789,\"journal\":{\"name\":\"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2510650.2510651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2510650.2510651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

当前低成本实时深度相机获得的深度数据提供了非常翔实的手部姿势描述,可以有效地用于手势识别目的。提出了一种新的基于深度数据的手势识别方案。首先从获取的深度图中提取手,并借助于相关视图的颜色信息。然后手被分割成手掌和手指区域。接下来,提取两组不同的特征描述符,一组基于指尖到手中心的距离,另一组基于手轮廓的曲率。最后,采用多类SVM分类器对手势进行识别。所提出的方案是实时运行的,并且能够在Kinect获得的深度数据上达到非常高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand gesture recognition with depth data
Depth data acquired by current low-cost real-time depth cameras provide a very informative description of the hand pose, that can be effectively exploited for gesture recognition purposes. This paper introduces a novel hand gesture recognition scheme based on depth data. The hand is firstly extracted from the acquired depth maps with the aid also of color information from the associated views. Then the hand is segmented into palm and finger regions. Next, two different set of feature descriptors are extracted, one based on the distances of the fingertips from the hand center and the other on the curvature of the hand contour. Finally, a multi-class SVM classifier is employed to recognize the performed gestures. The proposed scheme runs in real-time and is able to achieve a very high accuracy on depth data acquired with the Kinect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信