使用频繁项集的进化聚类

R. Shankar, G. V. Kiran, Vikram Pudi
{"title":"使用频繁项集的进化聚类","authors":"R. Shankar, G. V. Kiran, Vikram Pudi","doi":"10.1145/1833280.1833284","DOIUrl":null,"url":null,"abstract":"Evolutionary clustering is an emerging research area addressing the problem of clustering dynamic data. An evolutionary clustering should take care of two conflicting criteria: preserving the current cluster quality and not deviating too much from the recent history. In this paper we propose an algorithm for evolutionary clustering using frequent itemsets. A frequent itemset based approach for evolutionary clustering is natural and it automatically satisfy the two criteria of evolutionary clustering. We provide theoretical as well as experimental proofs to support our claims. We performed experiments on our approach using different datasets and the results show that our approach is comparable to most of the existing algorithms for evolutionary clustering.","PeriodicalId":383372,"journal":{"name":"StreamKDD '10","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Evolutionary clustering using frequent itemsets\",\"authors\":\"R. Shankar, G. V. Kiran, Vikram Pudi\",\"doi\":\"10.1145/1833280.1833284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary clustering is an emerging research area addressing the problem of clustering dynamic data. An evolutionary clustering should take care of two conflicting criteria: preserving the current cluster quality and not deviating too much from the recent history. In this paper we propose an algorithm for evolutionary clustering using frequent itemsets. A frequent itemset based approach for evolutionary clustering is natural and it automatically satisfy the two criteria of evolutionary clustering. We provide theoretical as well as experimental proofs to support our claims. We performed experiments on our approach using different datasets and the results show that our approach is comparable to most of the existing algorithms for evolutionary clustering.\",\"PeriodicalId\":383372,\"journal\":{\"name\":\"StreamKDD '10\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"StreamKDD '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1833280.1833284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"StreamKDD '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1833280.1833284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

进化聚类是解决动态数据聚类问题的新兴研究领域。进化聚类应该注意两个相互冲突的标准:保持当前的聚类质量,不要过多地偏离最近的历史。本文提出了一种基于频繁项集的进化聚类算法。一种基于频繁项集的进化聚类方法是自然的,它自动满足进化聚类的两个标准。我们提供理论和实验证据来支持我们的主张。我们使用不同的数据集对我们的方法进行了实验,结果表明我们的方法与大多数现有的进化聚类算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary clustering using frequent itemsets
Evolutionary clustering is an emerging research area addressing the problem of clustering dynamic data. An evolutionary clustering should take care of two conflicting criteria: preserving the current cluster quality and not deviating too much from the recent history. In this paper we propose an algorithm for evolutionary clustering using frequent itemsets. A frequent itemset based approach for evolutionary clustering is natural and it automatically satisfy the two criteria of evolutionary clustering. We provide theoretical as well as experimental proofs to support our claims. We performed experiments on our approach using different datasets and the results show that our approach is comparable to most of the existing algorithms for evolutionary clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信