多集分裂可行性问题的惯性松弛CQ正则化新方法

Wenting Chen, Mei-xia Li
{"title":"多集分裂可行性问题的惯性松弛CQ正则化新方法","authors":"Wenting Chen, Mei-xia Li","doi":"10.1117/12.2639062","DOIUrl":null,"url":null,"abstract":"The multiple-sets splitting feasibility problem (MSSFP) is the extension of splitting feasibility problem. This problem has been widely used in visual neural network and fuzzy image processing system. In this article, we offer the regularization methods of the inertial relaxed CQ algorithm, where the choice of parameters is not related to the operator norm. Under certain conditions, the weak convergence of the sequences is proved. In addition, the convergence of the algorithm is verified by numerical experiments.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New inertial relaxed CQ regularization methods for the multiple-sets splitting feasibility problem\",\"authors\":\"Wenting Chen, Mei-xia Li\",\"doi\":\"10.1117/12.2639062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multiple-sets splitting feasibility problem (MSSFP) is the extension of splitting feasibility problem. This problem has been widely used in visual neural network and fuzzy image processing system. In this article, we offer the regularization methods of the inertial relaxed CQ algorithm, where the choice of parameters is not related to the operator norm. Under certain conditions, the weak convergence of the sequences is proved. In addition, the convergence of the algorithm is verified by numerical experiments.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多集分裂可行性问题(MSSFP)是分裂可行性问题的扩展。该问题在视觉神经网络和模糊图像处理系统中得到了广泛的应用。本文给出了惯性松弛CQ算法的正则化方法,其中参数的选择与算子范数无关。在一定条件下,证明了序列的弱收敛性。通过数值实验验证了算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New inertial relaxed CQ regularization methods for the multiple-sets splitting feasibility problem
The multiple-sets splitting feasibility problem (MSSFP) is the extension of splitting feasibility problem. This problem has been widely used in visual neural network and fuzzy image processing system. In this article, we offer the regularization methods of the inertial relaxed CQ algorithm, where the choice of parameters is not related to the operator norm. Under certain conditions, the weak convergence of the sequences is proved. In addition, the convergence of the algorithm is verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信