基体主导复合材料单元胞细观力学分析中的连续位错和主动单滑移假设

Temesgen Takele Kasa
{"title":"基体主导复合材料单元胞细观力学分析中的连续位错和主动单滑移假设","authors":"Temesgen Takele Kasa","doi":"10.32393/csme.2020.1257","DOIUrl":null,"url":null,"abstract":"The key purpose of this paper is to propose a mono-slip dependent continuum dislocation method to MDCS (matrix dominated composite structure) analysis. The methodology focused on the dissipation energy theories using CDM (continuum dislocations method) integrated with the kinematics of small strain. The mathematical modeling of CDM comprises active mono-slip system formulations, thermodynamic dislocation analysis (TDA), energy dissipation analysis on the free form, and the progressions of dislocations. Furthermore, the dissipation energy analysis due to dislocation progression could be formulated in zero and non-zero principle by using an energy minimization technique with variational calculus. The numerical analysis performed by Wolfram Mathematica©, presented in zero and non-zero energy dissipation forms. The outcomes indicate that the formulated approach could be well-qualified to find optimal analysis results for MDC (matrix dominated composite) materials for the mono-slip system. Generally, this approach confirms its ability to investigate MDCS by including inclusions inside the UC.","PeriodicalId":184087,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 3","volume":"93 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuum Dislocations and Active Single-slip Assumption in MicroMechanical analysis of Matrix Dominated Composite Unit cell\",\"authors\":\"Temesgen Takele Kasa\",\"doi\":\"10.32393/csme.2020.1257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key purpose of this paper is to propose a mono-slip dependent continuum dislocation method to MDCS (matrix dominated composite structure) analysis. The methodology focused on the dissipation energy theories using CDM (continuum dislocations method) integrated with the kinematics of small strain. The mathematical modeling of CDM comprises active mono-slip system formulations, thermodynamic dislocation analysis (TDA), energy dissipation analysis on the free form, and the progressions of dislocations. Furthermore, the dissipation energy analysis due to dislocation progression could be formulated in zero and non-zero principle by using an energy minimization technique with variational calculus. The numerical analysis performed by Wolfram Mathematica©, presented in zero and non-zero energy dissipation forms. The outcomes indicate that the formulated approach could be well-qualified to find optimal analysis results for MDC (matrix dominated composite) materials for the mono-slip system. Generally, this approach confirms its ability to investigate MDCS by including inclusions inside the UC.\",\"PeriodicalId\":184087,\"journal\":{\"name\":\"Progress in Canadian Mechanical Engineering. Volume 3\",\"volume\":\"93 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Canadian Mechanical Engineering. Volume 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32393/csme.2020.1257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Canadian Mechanical Engineering. Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32393/csme.2020.1257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是提出一种依赖于单滑移的连续位错方法来分析基体主导复合材料结构。该方法主要是将连续位错法与小应变的运动学相结合的耗散能理论。CDM的数学模型包括主动单滑移系统公式、热力学位错分析(TDA)、自由形式的能量耗散分析和位错的级数。此外,利用变分微积分的能量最小化技术,可以在零和非零原理下表达位错进阶的耗散能分析。数值分析由Wolfram Mathematica©进行,以零和非零能量耗散形式呈现。结果表明,所建立的方法可以很好地为基体主导复合材料的单滑移体系找到最优分析结果。通常,这种方法通过在UC内包含夹杂物来确认其调查MDCS的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuum Dislocations and Active Single-slip Assumption in MicroMechanical analysis of Matrix Dominated Composite Unit cell
The key purpose of this paper is to propose a mono-slip dependent continuum dislocation method to MDCS (matrix dominated composite structure) analysis. The methodology focused on the dissipation energy theories using CDM (continuum dislocations method) integrated with the kinematics of small strain. The mathematical modeling of CDM comprises active mono-slip system formulations, thermodynamic dislocation analysis (TDA), energy dissipation analysis on the free form, and the progressions of dislocations. Furthermore, the dissipation energy analysis due to dislocation progression could be formulated in zero and non-zero principle by using an energy minimization technique with variational calculus. The numerical analysis performed by Wolfram Mathematica©, presented in zero and non-zero energy dissipation forms. The outcomes indicate that the formulated approach could be well-qualified to find optimal analysis results for MDC (matrix dominated composite) materials for the mono-slip system. Generally, this approach confirms its ability to investigate MDCS by including inclusions inside the UC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信