{"title":"低资源语言的集成自我训练:字素-音素转换和形态屈折","authors":"Xiang Yu, Ngoc Thang Vu, Jonas Kuhn","doi":"10.18653/v1/2020.sigmorphon-1.5","DOIUrl":null,"url":null,"abstract":"We present an iterative data augmentation framework, which trains and searches for an optimal ensemble and simultaneously annotates new training data in a self-training style. We apply this framework on two SIGMORPHON 2020 shared tasks: grapheme-to-phoneme conversion and morphological inflection. With very simple base models in the ensemble, we rank the first and the fourth in these two tasks. We show in the analysis that our system works especially well on low-resource languages.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Ensemble Self-Training for Low-Resource Languages: Grapheme-to-Phoneme Conversion and Morphological Inflection\",\"authors\":\"Xiang Yu, Ngoc Thang Vu, Jonas Kuhn\",\"doi\":\"10.18653/v1/2020.sigmorphon-1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an iterative data augmentation framework, which trains and searches for an optimal ensemble and simultaneously annotates new training data in a self-training style. We apply this framework on two SIGMORPHON 2020 shared tasks: grapheme-to-phoneme conversion and morphological inflection. With very simple base models in the ensemble, we rank the first and the fourth in these two tasks. We show in the analysis that our system works especially well on low-resource languages.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.sigmorphon-1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensemble Self-Training for Low-Resource Languages: Grapheme-to-Phoneme Conversion and Morphological Inflection
We present an iterative data augmentation framework, which trains and searches for an optimal ensemble and simultaneously annotates new training data in a self-training style. We apply this framework on two SIGMORPHON 2020 shared tasks: grapheme-to-phoneme conversion and morphological inflection. With very simple base models in the ensemble, we rank the first and the fourth in these two tasks. We show in the analysis that our system works especially well on low-resource languages.