基于MapReduce的大数据Top-k查询算法

Xueyan Lin
{"title":"基于MapReduce的大数据Top-k查询算法","authors":"Xueyan Lin","doi":"10.1109/ICSESS.2015.7339218","DOIUrl":null,"url":null,"abstract":"Big data has brought new challenges to Top-k in data partitioning and parallel programming model. In order to overcome these problems, a new Top-k query algorithm for big data based on MapReduce is proposed. Based on the features of MapReduce, this paper presents an in-depth study of Top-k query on big data from the perspective of data partitioning, data reduce, etc. Theoretical and experimental results show the proposed Algorithm makes a sharp increase in efficiency.","PeriodicalId":335871,"journal":{"name":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Top-k query algorithm for big data based on MapReduce\",\"authors\":\"Xueyan Lin\",\"doi\":\"10.1109/ICSESS.2015.7339218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data has brought new challenges to Top-k in data partitioning and parallel programming model. In order to overcome these problems, a new Top-k query algorithm for big data based on MapReduce is proposed. Based on the features of MapReduce, this paper presents an in-depth study of Top-k query on big data from the perspective of data partitioning, data reduce, etc. Theoretical and experimental results show the proposed Algorithm makes a sharp increase in efficiency.\",\"PeriodicalId\":335871,\"journal\":{\"name\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2015.7339218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2015.7339218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大数据给Top-k带来了数据分区和并行编程模型方面的新挑战。为了克服这些问题,提出了一种基于MapReduce的大数据Top-k查询算法。本文基于MapReduce的特点,从数据分区、数据约简等角度对大数据的Top-k查询进行了深入研究。理论和实验结果表明,该算法能显著提高算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Top-k query algorithm for big data based on MapReduce
Big data has brought new challenges to Top-k in data partitioning and parallel programming model. In order to overcome these problems, a new Top-k query algorithm for big data based on MapReduce is proposed. Based on the features of MapReduce, this paper presents an in-depth study of Top-k query on big data from the perspective of data partitioning, data reduce, etc. Theoretical and experimental results show the proposed Algorithm makes a sharp increase in efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信